TESS Finds a Planet That Takes 482 Days to Orbit, the Widest it’s Seen so Far

An artist's rendition of the two planets and star in the TOI-4600 system. One of them has the longest orbit of any planet yet found by TESS. Image Credit: Tedi Vick

We’re rapidly learning that our Solar System, so familiar to us all, does not represent normal.

A couple of decades ago, we knew very little about other solar systems. Astronomers had discovered only a handful of exoplanets, especially around pulsars. But that all changed in the last few years.

Continue reading “TESS Finds a Planet That Takes 482 Days to Orbit, the Widest it’s Seen so Far”

Astronomers Confirm First Exoplanet “Thermometer Molecule” that is Typically Used to Study Brown Dwarfs

Artist impression of "hot Jupiter" exoplanet, WASP-31 b. (Credit: ESA/Hubble & NASA)

A recent study published in The Astrophysical Journal Letters examines a rare alloy molecule known as chromium hydride (CrH) and its first-time confirmation on an exoplanet, in this case, WASP-31 b. Traditionally, CrH is only found in large quantities between 1,200 to 2,000 degrees Kelvin (926.85 to 1,726.85 degrees Celsius/1700 to 3,140 degrees Fahrenheit) and used to ascertain the temperature of cool stars and brown dwarfs. Therefore, astronomers like Dr. Laura Flagg in the Department of Astronomy and Carl Sagan Institute at Cornell University refer to CrH as a “thermometer for stars”.

Continue reading “Astronomers Confirm First Exoplanet “Thermometer Molecule” that is Typically Used to Study Brown Dwarfs”

A Neptune-sized Exoplanet is Denser Than Steel. The Result of a Catastrophic Collision?

An artist's conception of a hot Neptune. TOI-1538b is a super-dense version of this type of exoplanet and its core is denser than steel. Courtesy Pablo Carlos Budassi, CC BY-SA 4.0.
An artist's conception of a hot Neptune. TOI-1538b is a super-dense version of this type of exoplanet and its core is denser than steel. Courtesy Pablo Carlos Budassi, CC BY-SA 4.0.

There’s an odd exoplanet out there posing a challenge to planetary scientists. It’s a hot Neptune denser than steel. The big question is: how did it form?

Continue reading “A Neptune-sized Exoplanet is Denser Than Steel. The Result of a Catastrophic Collision?”

Watch an Actual Exoplanet Orbit its Star for 17 Years

Artist rendition of exoplanet, Beta Pictoris b, whose partial orbit was recently featured in a time-lapsed video. (Credit: ESO L. Calçada/N. Risinger)

Searching for exoplanets is incredibly difficult given their literal astronomical distances from Earth, which is why a myriad of methods have been created to find them. These include transit, redial velocity, astrometry, gravitational microlensing, and direct imaging. It is this last method that was used to recently create a time-lapse video that compresses a mind-blowing 17 years of the partial orbit of exoplanet, Beta Pictoris b, into 10 seconds. The data to create the video was collected between 2003 and 2020, it encompasses approximately 75 percent of the total orbit, and marks the longest time-lapse video of an exoplanet ever produced.

Continue reading “Watch an Actual Exoplanet Orbit its Star for 17 Years”

This Jupiter-Sized Exoplanet is Unusual for Several Reasons

Artist illustration of a warm Jupiter gas-giant exoplanet (right) orbiting its parent star, along with several smaller exoplanets. (Credit: Detlev Van Ravenswaay/Science Photo Library)

In a recent study published in the Monthly Notices of the Royal Astronomical Society, a team of international researchers examined exoplanet TOI-4860 b, which is located approximately 80 parsecs (261 light-years) from Earth and has an orbital period of approximately 1.52 days around a low-mass star, or a star smaller than our Sun. Exoplanets orbiting so close to their parent stars aren’t uncommon and commonly known as “hot Jupiters”.

However, TOI-4860 b is unique due its relative size compared to its parent star, along with its lower surface temperatures compared to “hot Jupiters” and possessing large amounts of heavy elements. These attributes are why researchers are classifying TOI-4680 b as a “warm Jupiter”, and could challenge traditional planetary systems formation models while offering new insights into such processes, as well.

Continue reading “This Jupiter-Sized Exoplanet is Unusual for Several Reasons”

This Brown Dwarf is 2,000 Degrees Hotter Than the Sun

exoplanet hot jupiter transiting its star
This artist’s impression shows an ultra-hot exoplanet as it is about to transit in front of its host star. Credit: ESO

Astronomers have discovered an intense binary star system located about 1,400 light years away. It contains a brown dwarf with 80 times the mass of Jupiter which is bound closely with an incredibly hot white dwarf star. Observations have shown the brown dwarf is tidally locked to the white dwarf, allowing the daytime surface temperatures on the brown dwarf to reach 8,000 Kelvin (7,700 Celsius, 14,000 Fahrenheit) — which is much hotter than the surface of the Sun, which is about 5,700 K (5,427 C, 9,800 F). The brown dwarf’s nightside, on the other hand, is about 6,000 degrees K cooler.

Continue reading “This Brown Dwarf is 2,000 Degrees Hotter Than the Sun”

Do Technological Civilizations Depend on Atmospheric Oxygen?

Humans gathered around an evening campfire. Credit: Jarek Tuszy?ski / CC-BY-SA-3.0 & GDFL

Nearly two million years ago a species of upright apes known as homo erectus began to utilize fire. It was a gradual process, from opportunistic users of natural fires to masters able to craft flames from flint and tender. We are their descendants. We are creatures of forge and kiln, hearth and home. Fire has become so central to us that instead of homo sapiens, we could call ourselves homo ignus, the fire-wielding ape. Fire is central to the rise of our civilization. It cooks our food, keeps us warm, and illuminates our night. This raises an interesting question. Could we have built a civilization without fire?

Continue reading “Do Technological Civilizations Depend on Atmospheric Oxygen?”

Chinese Scientists Complete a Concept Study for a 6-Meter Space Telescope to Find Habitable Exoplanets

Illustration of the proposed Tainlin Spacecraft. Credit: CNSA

We have discovered more than 5,400 planets in the universe. These worlds range from hot jovians that closely orbit their star to warm ocean worlds to cold gas giants. While we know they are there, we don’t know much about them. Characteristics such as mass and size are fairly straightforward to measure, but other properties such as temperature and atmospheric composition are more difficult. So the next generation of telescopes will try to capture that information, including one proposed telescope from the Chinese National Space Administration.

Continue reading “Chinese Scientists Complete a Concept Study for a 6-Meter Space Telescope to Find Habitable Exoplanets”

Clumps Around a Young Star Could Eventually Turn Into Planets Like Jupiter

The young star V960 Mon and its surrounding dusty material, seen by SPHERE (left) and ALMA (right). Credit: ESO/ALMA (ESO/NAOJ/NRAO)/Weber et al

From the dust, we rise. Vortices within the disks of young stars bring forth planets that coalesce into worlds. At least that’s our understanding of planetary evolution, and new images from the Atacama Large Millimeter/submillimeter Array (ALMA) and the Very Large Telescope’s Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) further support this.

Continue reading “Clumps Around a Young Star Could Eventually Turn Into Planets Like Jupiter”

There Could be Trillions of Rogue Planets Wandering the Milky Way

Artist's rendition of an ice-encrusted, Earth-mass rogue planet free-floating through space. (Credit: NASA’s Goddard Space Flight Center)

A pair of new studies set to be published in The Astronomical Journal examine new discoveries in the field of rogue planets, which are free-floating exoplanets that drift through space unbound by the gravitational tug of a star. They can form within their own solar system and get ejected, or they can form independently, as well. The first study examines only the second discovery of an Earth-mass rogue planet—the first being discovered in September 2020—while the second study examines the potential number of rogue planets that could exist in our Milky Way Galaxy.

Continue reading “There Could be Trillions of Rogue Planets Wandering the Milky Way”