There’s No Chemical Difference Between Stars With or Without Planets

Orion Nebula - Closest Star Forming Region to Earth c Cimone - Trottier Observatory

Strange New Worlds

Imagine if a star could tell you it had planets. That would be really helpful because finding planets orbiting distant stars – exoplanets – is hard. We found Neptune, the most distant planet in our own solar system, in 1846. But we didn’t have direct evidence of a planet around ANOTHER star until….1995.…149 years later. Think about that. Any science fiction you watched or read that was written before 1995 which depicted travel to exoplanets assumed that other planets even existed. Star Trek: The Next Generation aired its last season in 1994. We didn’t even know if Vulcan was out there. (Now we do!…sortof)

Jupiter (right bright point) and Saturn (left bright point) seen here against the Milky Way were the most distant planets we could see before inventing telescopes – C. Matthew Cimone
Continue reading “There’s No Chemical Difference Between Stars With or Without Planets”

A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive

An artist's impression of K2-25b orbiting its host star, and M-dwarf in the Hyades cluster. Image Credit: NOIRLab/NSF/AURA/J. Pollard

Astronomers have found another strange exoplanet in a distant solar system. This one’s an oddball because its size is intermediate between Earth and Neptune, yet it’s 50% more massive than Neptune.

Astronomers have found what they call “puff planets” in other Solar Systems. Those are planets that are a few times more massive than Earth, but with radii much larger than Neptune’s. But this planet is the opposite of that: it’s much more massive than Neptune, but it also has a much smaller radius. Super-dense, not super-puffy.

This oddball planet is calling into question our understanding of how planets form.

Continue reading “A Strange Planet has been Found that’s Smaller than Neptune But 50% More Massive”

Saturn-sized Planet Found in the Habitable Zone of Another Star. The First Planet Completely Discovered by Amateur Astronomers

Exoplanets have been a particularly hot topic of late.  More than 4000 of them have been discovered since the first in 1995.  Now one more can potentially be added to the list. This one is orbiting Gliese 3470, a red dwarf star located in the constellation Cancer.  What makes this discovery particularly interesting is that this planet wasn’t discovered by any professional astronomers using high tech equipment like the Kepler Space Telescope.  It was found entirely by amateurs.

Continue reading “Saturn-sized Planet Found in the Habitable Zone of Another Star. The First Planet Completely Discovered by Amateur Astronomers”

Wow! An Actual Picture of Multiple Planets Orbiting a Sunlike Star

This image, captured by the SPHERE instrument on ESO’s Very Large Telescope, shows the star TYC 8998-760-1 accompanied by two giant exoplanets. This is the first time astronomers have directly observed more than one planet orbiting a star similar to the Sun. The image was captured by blocking the light from the young, Sun-like star (on the top left corner) using a coronagraph, which allows for the fainter planets to be detected. The bright and dark rings we see on the star’s image are optical artefacts. The two planets are visible as two bright dots in the centre and bottom right of the frame. Image Credit: ESO/Bohn et al, 2020

We’ve detected thousands of exoplanets, but for the most part, nobody’s ever seen them. They’re really just data, and graphs of light curves. The exoplanet images you see here at Universe Today and other space websites are the creations of very skilled illustrators, equal parts data and creative license. But that’s starting to change.

The European Southern Observatory’s Very Large Telescope (VLT) has captured images of two exoplanets orbiting a young, Sun-like star.

Continue reading “Wow! An Actual Picture of Multiple Planets Orbiting a Sunlike Star”

Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets

This artist’s view shows the planet orbiting the young star Beta Pictoris. This exoplanet is the first to have its rotation rate measured. Its eight-hour day corresponds to an equatorial rotation speed of 100 000 kilometres/hour — much faster than any planet in the Solar System.

We’re getting better and better at detecting exoplanets. Using the transit method of detection, the Kepler Space Telescope examined over 530,000 stars and discovered over 2,600 explanets in nine years. TESS, the successor to Kepler, is still active, and has so far identified over 1800 candidate exoplanets, with 46 confirmed.

But what if, hidden in all that data, there were even more planets? Astronomers at Warwick University said they’ve found one of these “lost” planets, and that they think they’ll find even more.

Continue reading “Astronomers are Starting to Find Planets in Much Longer Orbits. Cooler, More Habitable Planets”

A Neptune-class exoplanet has been found with its atmosphere stripped away

Voyager 2 captured this image of Neptune in 1982, when it was over 7 million km (4.4 million miles) away from the planet. The Great Dark Spot in the middle of the image was the first storm ever seen on Neptune. Image: By NASA (JPL image) [Public domain], via Wikimedia Commons

What happens when a giant planet gets stripped of its atmosphere? It leaves behind a giant core, rich in iron and other metals. A team using NASA’s TESS mission recently found such a remnant core, orbiting a star just 730 light-years away.

Continue reading “A Neptune-class exoplanet has been found with its atmosphere stripped away”

Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins

This artist’s concept shows a hypothetical planet covered in water around the binary star system of Kepler-35A and B. The composition of such water worlds has fascinated astronomers and astrophysicists for years. (Image by NASA/JPL-Caltech.)

We all know what water is. And what rock is. The difference is crystal clear. Well, here on Earth it is.

But on other worlds? The difference might not be so clear.

Continue reading “Deep Down in Ocean Worlds, it’s Difficult to Tell Where the Oceans End and the Rock Begins”

Another Collection of Newly Forming Planetary Systems. This Time from the Gemini Planet Imager

This figure shows the dust rings around young stars captured by the Gemini Planet Imager Exoplanet Survey, or GPIES. The rings show a diversity of shapes and sizes, made more extreme by the different projections of the rings on the sky. (UC Berkeley image by Thomas Esposito)

Over the next decade, several very powerful telescopes will come online. Observing time on these ‘scopes will be in high demand, and their range of targets will span a whole host of topics in astronomy, astrophysics, and cosomology.

One of the topics near the top of the list is exoplanets.

But how will astronomers know where to spend their precious exoplanet observing time?

Continue reading “Another Collection of Newly Forming Planetary Systems. This Time from the Gemini Planet Imager”

Astronomers Estimate There Are 6 Billion Earth-Like Planets in the Milky Way

Meet Kepler-22b, an exoplanet with an Earth-like radius in the habitable zone of its host star. Unfortunately its mass remains unknown. Image Credit: NASA

Six billion Earth-like planets in the Milky Way? If true, that’s astounding. But the number needs some context.

The Milky Way has up 400 billion stars. So even if there are six billion Earth-like planets, they’re still spread far and wide throughout our vast galaxy.

Continue reading “Astronomers Estimate There Are 6 Billion Earth-Like Planets in the Milky Way”