This is it! On May 12th we’ll see the Event Horizon Telescope’s Image of the Milky Way’s Supermassive Black Hole

This image contains a collage of ESO’s telescopes at various sites in Chile.

In April of 2019, the international astronomical consortium known as the Event Horizon Telescope (EHT) made headlines worldwide when it announced the first-ever image of a black hole. Specifically, the image showed the glowing disk surrounding the supermassive black hole (SMBH) at the center of the M87 galaxy. In 2021, they followed up on this by acquiring an image of the core region of the Centaurus A galaxy and the radio jet emanating from it.

But in what is sure to be the most exciting announcement yet, the European Southern Observatory (ESO) and researchers from the EHT will announce the results of their survey that examined the SMBH at the center of our very own Milky Way Galaxy – Sagittarius A*! The results will be shared as part of a press conference on Thursday, May 12th, starting at 03:00 PM CEST (08:00 EDT; 05:00 PDT). The event will take place at the ESO Headquarters in Munich, Germany, and live-streamed via an ESO webcast.

Continue reading “This is it! On May 12th we’ll see the Event Horizon Telescope’s Image of the Milky Way’s Supermassive Black Hole”

A THIRD Planet Found Orbiting Nearby Proxima Centauri

This artist’s impression shows Proxima d, a planet candidate recently found orbiting the red dwarf star Proxima Centauri, the closest star to the Solar System. The planet is believed to be rocky and to have a mass about a quarter that of Earth. Two other planets known to orbit Proxima Centauri are visible in the image too: Proxima b, a planet with about the same mass as Earth that orbits the star every 11 days and is within the habitable zone, and candidate Proxima c, which is on a longer five-year orbit around the star.

In August of 2016, astronomers with the European Southern Observatory (ESO) announced that they had discovered an exoplanet orbiting in neighboring Proxima Centauri. Based on Radial Velocity measurements (aka. Doppler Photometry), the discovery team estimated that the planet was roughly the same size and mass as Earth and orbited with Proxima Centauri’s Circumsolar Habitable Zone (HZ). In 2020, this planet was confirmed by follow-up observations.

In that same year, a second exoplanet (Proxima c) roughly seven times the mass of Earth (a Super-Earth or mini-Neptune) was confirmed. As if that wasn’t enough, an international team of astronomers with the ESO recently announced that they detected a third exoplanet around Proxima Centauri – Proxima d! This Mars-sized planet orbits about halfway between its host star and Proxima b and is one of the lightest exoplanets ever discovered.

Continue reading “A THIRD Planet Found Orbiting Nearby Proxima Centauri”

Images of 42 of the Biggest Asteroids in the Solar System

This image depicts 42 of the largest objects in the asteroid belt, located between Mars and Jupiter. Most of them are larger than 100 kilometres, with the two biggest asteroids being Ceres and Vesta, which are around 940 and 520 kilometres in diameter, and the two smallest ones being Urania and Ausonia, each only about 90 kilometres. The images of the asteroids have been captured with the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) instrument on ESO’s Very Large Telescope.

A huge team of astronomers have combined forces to use the European Southern Observatory’s Very Large Telescope (ESO’s VLT) to provide the sharpest view ever of 42 of the largest objects in the asteroid belt, located between Mars and Jupiter.

Fittingly, the collection of images was released on the 42nd anniversary of the publication of “The Hitchhiker’s Guide to the Galaxy” by Douglas Adams. In the book, the number 42 is the answer to the “Ultimate Question of Life, the Universe, and Everything.” These 42 images represent some of the sharpest views ever of these objects  — which might contribute to answering these ultimate questions!

Plus, there’s a great poster of the asteroids, too:

Continue reading “Images of 42 of the Biggest Asteroids in the Solar System”

A LEGO® Version of the Very Large Telescope. It Even has a Laser Interferometer

Interferometers are some of the most highly advanced sensor instruments that humans have made.  They are used in everything from astronomy to quantum mechanics and have profoundly impacted our understanding of science.  But not all interferometers have to be functional. A Dutch astronomer named Frans Snik has just designed one that, while it isn’t function, is inspiring all the same – and it happens to be made out of Lego.

Continue reading “A LEGO® Version of the Very Large Telescope. It Even has a Laser Interferometer”

The Galactic Beauty of Star Formation

Image of Galaxy NGC 3627 located in the constellation LEO. The golden gas glow corresponds to clouds of ionized hydrogen, while the bluish regions reveal the distribution of slightly older stars. Credit: ESO/PHANGS

I’d never seen galaxy images like this before. Nobody had! These images highlight star forming regions in nearby(ish) galaxies. There are still a number of unanswered questions surrounding how star formation actually occurs. To answer those questions, we are observing galaxies that are actively forming stars within giant clouds of gas. Until recently, we didn’t have the resolution needed to clearly image the individual gas clouds themselves. But images released by a project called PHANGS (Physics at High Angular resolution in Nearby GalaxieS) in a collaboration between the European Southern Observatory Very Large Telescope and the Atacama Large millimeter/submillmeter Array (ALMA) have provided never before seen detail of star forming clouds in other galaxies.

This image combines observations of the nearby galaxies NGC 1300, NGC 1087, NGC 3627 (top, from left to right), NGC 4254 and NGC 4303 (bottom, from left to right) taken with the Multi-Unit Spectroscopic Explorer (MUSE) on ESO’s Very Large Telescope (VLT). Each individual image is a combination of observations conducted at different wavelengths of light to map stellar populations and warm gas.. Image and Image Description PHANGS/ESO. Original Image
Continue reading “The Galactic Beauty of Star Formation”

The Giant Magellan Telescope’s 6th Mirror has Just Been Cast. One More to Go

By 2029, the Giant Magellan Telescope (GMT) in northern Chile will begin collecting its first light from the cosmos. As part of a new class of next-generation instruments known as “extremely large telescopes” (ELTs), the GMT will combine the power of sophisticated primary mirrors, flexible secondary mirrors, adaptive optics (AOs), and spectrometers to see further and with greater detail than any optical telescopes that came before.

At the heart of the telescope are seven monolithic mirror segments, each measuring 8.4 m (27.6 ft) in diameter, which will give it the resolving power of a 24.5 m (80.4 ft) primary mirror. According to recent statements from the GMT Organization (GMTO), the University of Arizona’s Richard F. Caris Mirror Lab began casting the sixth and seventh segments for the telescope’s primary mirror (which will take the next four years to complete).

More

Here’s the Extremely New Website for the Extremely Large Telescope

Welcome to elt.eso.org

In the vein of “go big or go home,” the European Southern Observatory (ESO) has launched a stunning new website to showcase information about — and match the scale of — its Extremely Large Telescope (ELT), the highly anticipated observatory scheduled to have first light in 2025.

Continue reading “Here’s the Extremely New Website for the Extremely Large Telescope”

Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!

Credit: Axel Quetz / MPIA Graphics Department

Located 63.4 light-years from Earth in the constellation Pictor is the young and bright blue star, Beta Pictoris. In 2008, observations conducted from the ESO’s Paranal Observatory in Chile confirmed the presence of an extrasolar planet. This planet was Beta Pictoris b, a Super-Jupiter with an orbital period of up between 6890 and 8890 days (~19 to 24 years) that was confirmed by directly imaging it as it passed behind the star.

In August of 2019, a second planet was detected (another Super-Jupiter) orbiting closer to Beta Pictoris. However, due to its proximity to its parent star, it could only be studied through indirect means (radial velocity measurements). After conducting a reanalysis of data obtained by the VLT, astronomers with the GRAVITY collaboration were able to confirm the existence of Beta Pictoris c through direct imaging.

Continue reading “Those are Exoplanets. You’re Looking at Actual Exoplanets 63 Light-Years Away!”

Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang

This illustration depicts a gas halo surrounding a quasar in the early Universe. The quasar, in orange, has two powerful jets and a supermassive black hole at its centre, which is surrounded by a dusty disc. The gas halo of glowing hydrogen gas is represented in blue. A team of astronomers surveyed 31 distant quasars, seeing them as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. They found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. These gas stashes provide the perfect food source to sustain the growth of supermassive black holes in the early Universe.

Thanks to the vastly improved capabilities of today’s telescopes, astronomers have been probing deeper into the cosmos and further back in time. In so doing, they have been able to address some long-standing mysteries about how the Universe evolved since the Big Bang. One of these mysteries is how supermassive black holes (SMBHs), which play a crucial role in the evolution of galaxies, formed during the early Universe.

Using the ESO’s Very Large Telescope (VLT) in Chile, an international team of astronomers observed galaxies as they appeared about 1.5 billion years after the Big Bang (ca. 12.5 billion years ago). Surprisingly, they observed large reservoirs of cool hydrogen gas that could have provided a sufficient “food source” for SMBHs. These results could explain how SMBHs grew so fast during the period known as the Cosmic Dawn.

Continue reading “Black Holes Were Already Feasting Just 1.5 Billion Years After the Big Bang”