Will Russia Rescue ExoMars?

The ExoMars program. Credit: ESA

[/caption]

After NASA was forced to back out the joint ExoMars mission with the European Space Agency due to budget constraints, ESA went looking for help with the planned multi-vehicle Mars mission. Now, reportedly the Head of Roscosmos Vladimir Popovkin met with Director General of the ESA, Jean-Jacques Dordain last week, and the two signed a memorandum of understanding to work together to make ExoMars a reality.

“The sides consider this project feasible and promising,” Popovkin’s spokeswoman Anna Vedishcheva was quoted in Ria Novosti. “The sides are to sign the deal by year-end.”

Russia’s participation in the project was also approved by the space council of the Russian Academy of Sciences.

The ExoMars program was slated to send an orbiter to Mars in 2016 and a rover in 2018, but after NASA pulled out of its part of the bargain — of providing several science instruments and an Atlas launch vehicle – ESA knew they could not do the entire mission on their own. Last fall, when it was becoming apparent that NASA’s ability to participate was in jeopardy, Dordain extended an invitation to Russia, and in turn Roscosmos officials hinted they might be interested in joining, offering to provide the use of their Proton rockets for the launches. The two space agencies then had preliminary talks at the Ariane 5 launch at Kourou, French Guiana in March, 2012.

Russian space agency chief Vladimir Popovkin said that Russia’s financing of ExoMars could be partially covered by insurance payments of 1.2 billion rubles (about $40.7 million) for the lost Phobos-Grunt sample return mission that would have gone to the Martian moon Phobos.

Artist concept of the ExoMars/Trace Gas Orbiter mission. Credit: NASA

The details of the new ExoMars partnership are yet to be worked out, but the ESA/NASA partnership would have sent the Trace Gas Orbiter to the Red Planet in 2016 to search for atmospheric methane — a potential signature for microbial life – as well as an advanced astrobiology rover to drill into the surface in 2018, with the hopes of determining if life ever evolved on Mars.

Unsurprisingly, the potential deal with Russia comes as a huge relief to European space scientists who have spent years working on ExoMars. Journalist Paul Sutherland quoted UK scientist John Zarnecki of the Open University, as saying, “It looks like the cavalry has come riding over the horizon to save us, but this time they are dressed in Russian uniforms. There will be a lot scientists in universities and research institutes throughout Europe who will be very relieved to hear this news. Otherwise it seemed that several years work preparing instruments for this mission was going to go down the drain.”

Sources: Sen.com, Ria Novosti

Could There Be Life In Them Thar Pits?

Computer-generated perspective of the Tractus Catene pit chains. Credit: ESA/DLR/FU Berlin (G. Neukum)

[/caption]

Recent images from ESA’s Mars Express spacecraft reveal long rows of crater-like depressions lining the flanks of ancient Martian volcanoes located in the planet’s vast Tharsis region. Rather than being the result of impact events, these “pit chains” were likely caused by underground lava flows — and could be a prime location for look for life.

Like similar features found on Earth, lava tubes on Mars are the result of rivers of magma that carved channels beneath the surface. When these channels empty out, a hollow tube is left. If the roof of a particularly large tube is near the surface the roof can eventually collapse, creating a surface depression… or, in some cases, opening up to the surface entirely.

Even though volcanism on Mars isn’t currently active — the last eruptions probably took place at least over a million years ago — the features left by volcanic activity are still very much present today and likely well-preserved beneath the Martian surface.

Shielded from harsh solar and cosmic radiation, the interior of such lava tubes could provide a safe haven for microbial life — especially if groundwater had found its way inside at some point.

Even though the surface of Mars can receive 250 times the radiation levels found on Earth, the layers of soil and rock surrounding the tubes can provide adequate protection for life, whether it be ancient Martian microbes or future explorers from Earth.

A wider image of the Tractus Catena region showing the large shield volcano Ascraeus Mons. Credits: ESA/DLR/FU Berlin (G. Neukum)

Of course, water and protection from radiation aren’t the only factors necessary for life. There also needs to be some source of heat. Fortunately, the pit chains imaged by Mars Express happen to be within one of the most volcano-laden areas of the Red Planet, a region called the Arcadia quadrangle. Within this area exist some of the largest volcanoes on Mars — and the Tractus Catena pits are located right in the middle of them.

If a heat source were ever to have been beneath the surface of Mars, there would be a good chance it would have been here.

And if our own planet is any measure of such things, where there’s heat and water there is often some form of life — however extreme the conditions may be.

“I’d like to see us land ON a volcano,” Dr. Tracy Gregg, a volcanologist with the University of Buffalo, had once told Universe Today back in 2004. “Right on the flanks. Often the best place to look for evidence of life on any planet is near volcanoes.”

“That may sound counterintuitive, but think about Yellowstone National Park , which really is nothing but a huge volcano,” Gregg elaborated. “Even when the weather in Wyoming is 20 below zero, all the geysers, which are fed by volcanic heat, are swarming with bacteria and all kinds of happy little things cruising around in the water. So, since we think that the necessary ingredients for life on Earth were water and heat, we are looking for the same things on Mars.”

As far as any remaining geothermal activity still happening beneath the Martian surface?

“I strongly suspect there are still molten (or at least mushy) magma bodies beneath the huge Tharsis volcanoes,” Gregg had said. (Read the full article here.)

On Earth, lava tubes, caves and underground spaces of all kinds harbor life, often specialized forms that are found no place else. Could this be (or have once been) the case on Mars as well? Only future exploration will tell. Until then, places like Tractus Catena will remain on scientists’ short list of places to look.

Read more on the ESA website here.

20-Ton Cargo Freighter Arrives at Space Station

The heaviest cargo ship ever has arrived and docked to the International Space Station, laden with 7 tons of supplies for the 6-member ISS crew. The 20-ton European ATV-3 cargo ship, named “Edoardo Amaldi” after the Italian physicist and spaceflight pioneer, made a “smooth and gentle” docking on March 28, 2012, the European Space Agency said. The supplies delivered included food, drinking water, clothing, oxygen, spare parts and fuel.

The ATV launched from Kourou, French Guiana last Friday. It will use its engines to boost the space station during its 5-month stay on orbit. It is scheduled to undock on August 27 and perform an “orbital cremation” of trash from the space station.

Watch the ATV Launch Live

UPDATE: The ATV launched successfully and is now on its way to the ISS, and we’ve switched out the live feed with a video replay. It will take about 6 days for the ATV 3 to rendezvous with the ISS and docking will take place on March 28th at 10:34PM UTC (06:34PM EDT).

The new ATV Edoardo Amaldi launched on its mission to the International Space Station early March 23/late March 22 at 4:34 UTC, (12:34 am EDT on the 24th). Europe’s third Automated Transfer Vehicle was launched on an Ariane 5 from the Spaceport in French Guiana to bring 7 tons of supplies to the space station.

Below is a short video shows the latest ATV’s construction all the way to the pre-launch preparations.

Continue reading “Watch the ATV Launch Live”

A Penny for your Curiosity on Mars

NASA's Mars rover Curiosity carries a Lincoln Penny on the calibration target to be used by a camera at the end of the robotic arm. The calibration target for the Mars Hand Lens Imager (MAHLI) camera is attached to a shoulder joint of the arm. Inset shows the location of the calibration target. Credit: NASA/JPL-Caltech

[/caption]

NASA’s huge Curiosity Mars Science Lab (MSL) rover is carrying a vintage Lincoln penny along for the long interplanetary journey to Mars – and it’s not to open the first Martian savings account.

Scientists will use the century old Lincoln penny – minted back in 1909 – as a modern age calibration target for one of Curiosity’s five powerful science cameras attached to the end of the hefty, 7 foot (2.1 meter) long robotic arm.

The car sized rover is on course to touchdown at the foothills of a towering and layered mountain inside Gale Crater in just 161 days on Aug. 6, 2012.

So far Curiosity has traveled 244 million kilometers since blasting off on Nov. 26, 2011 from Florida and has another 322 million kilometers to go to the Red Planet.

The copper penny is bundled to a shoulder joint on the rovers arm along with the other elements of the calibration target, including color chips, a metric standardized bar graphic, and a stair-step pattern for depth calibration.

The whole target is about the size of a smart phone and looks a lot like an eye vision chart in an ophthalmologist’s office. And it serves a similar purpose, which will be to check the performance of Curiosity eyes – specifically the Mars Hand Lens Imager (MAHLI) camera located at the terminus of the robotic arm.

Curiosity’s Calibration Target
Two instruments at the end of the robotic arm on NASA's Mars rover Curiosity will use calibration targets attached to a shoulder joint of the arm. Credit: NASA/JPL-Caltech

MAHLI will conduct close-up inspections of Martian rocks and soil. It can show tiny details, finer than a human hair.

The term “hand lens” in MAHLI’s name refers to the standard practice by field geologists’ of carrying a hand lens during expeditions for close up, magnified inspection of rocks they find along the way. So it’s also critical to pack various means of calibration so that researchers can interpret their results and put them into proper perspective.

MAHLI can also focus on targets over a wide range of distances near and far, from about a finger’s-width away out to the Red Planets horizon, which in this case means the mountains and rim of the breathtaking Gale Crater landing site.

“When a geologist takes pictures of rock outcrops she is studying, she wants an object of known scale in the photographs,” said MAHLI Principal Investigator Ken Edgett, of Malin Space Science Systems, San Diego, which supplied the camera to NASA.

Curiosity Mars Science Laboratory Rover - inside the Cleanroom at KSC
Curiosity with robotic arm extended. Calibration target is located at a shoulder joint on the arm. Photo taken just before encapsulation for 8 month long interplanetary Martian Journey and touchdown inside Gale Crater. Credit: Ken Kremer

The target features a collection of marked black bars in a wide range of labeled sizes to correlate calibration images to each image taken by Curiosity.

“If it is a whole cliff face, she’ll ask a person to stand in the shot. If it is a view from a meter or so away, she might use a rock hammer. If it is a close-up, as the MAHLI can take, she might pull something small out of her pocket. Like a penny.”

Edgett donated the special Lincoln penny with funds from his own pocket. The 1909 “VDB” cent stems from the very first year that Lincoln pennies were minted and also marks the centennial of President Abraham Lincoln’s birth. The VDB initials of the coin’s designer – Victor David Brenner — are on the reverse side. In mint condition the 1909 Lincoln VDB copper penny has a value of about $20.

The Lincoln penny in this photograph is part of a camera calibration target attached to NASA's Mars rover Curiosity. Credit: NASA/JPL-Caltech

“The penny is on the MAHLI calibration target as a tip of the hat to geologists’ informal practice of placing a coin or other object of known scale in their photographs. A more formal practice is to use an object with scale marked in millimeters, centimeters or meters,” Edgett said. “Of course, this penny can’t be moved around and placed in MAHLI images; it stays affixed to the rover.”

“Everyone in the United States can recognize the penny and immediately know how big it is, and can compare that with the rover hardware and Mars materials in the same image,” Edgett said.

“The public can watch for changes in the penny over the long term on Mars. Will it change color? Will it corrode? Will it get pitted by windblown sand?”

MAHLI’s calibration target also features a display of six patches of pigmented silicone to assist in interpreting color and brightness in the images. Five of them are leftovers from Spirit and Opportunity. The sixth has a fluorescent pigment that glows red when exposed to ultraviolet light, allows checking of an ultraviolet light source on MAHLI. The fluorescent material was donated to the MAHLI team by Spectra Systems, Inc., Providence, R.I.

Three-dimensional calibration of the MSL images will be done using the penny and a stair-stepped area at the bottom of the target.

“The importance of calibration is to allow data acquired on Mars to be compared reliably to data acquired on Earth,” said Mars Science Laboratory Project Scientist John Grotzinger, of the California Institute of Technology, Pasadena.

Curiosity is a 1 ton (900 kg) behemoth. She measures 3 meters (10 ft) in length and is nearly twice the size and five times as heavy as Spirit and Opportunity, NASA’s prior set of twin Martian robots. The science payload is 15 times heavier than the twin robots.

Curiosity is packed to the gills with 10 state of the art science instruments that are seeking the signs of life in the form of organic molecules – the carbon based building blocks of life as we know it.

NASA could only afford to build one rover this time.

Curiosity MSL location on 27 Feb 2012. Credit: NASA

Curiosity will be NASA’s last Mars rover since the 4th generation ExoMars rover due to liftoff in 2018 was just cancelled by the Obama Administration as part of a deep slash to NASA’s Planetary Science budget.

Experts React to Obama Slash to NASA’s Mars and Planetary Science Exploration

Earth’s next Mars rover will NOT be made in USA. President Obama has killed NASA funding for the ExoMars Rover joint project by NASA and ESA planned for 2018 Launch and designed to search for evidence of life. Credit: ESA - Annotation: Ken Kremer

[/caption]

Earth’s next Mars Rover – NOT Made in USA

Just days after President Obama met with brilliant High School students at the 2012 White House Science Fair to celebrate their winning achievements and encourage America’s Youth to study science and take up careers in the Science, Technology, Engineering and Math (STEM) technical fields, the Obama Administration has decided on deep budgets cuts slashing away the very NASA science programs that would inspire those same students to shoot for the Stars and Beyond and answer the question – Are We Alone ?

Last year, the Obama Administration killed Project Constellation, NASA’s Human Spaceflight program to return American astronauts to the Moon. This year, the President has killed NASA’s ExoMars Robotic Spaceflight program aimed at dispatching two ambitious missions to Mars in 2016 and 2018 to search for signs of life.

Both ExoMars probes involved a joint new collaboration with the European Space Agency (ESA) carefully crafted to share costs in hard times and get the most bang for the buck – outlined in my earlier Universe Today story, here.

Expert Scientists and Policy makers have been voicing their opinions.

President Obama meets America’s brightest Young Rocket Scientists
President Barack Obama hosted the winning science fair students from a range of nationwide competitions at the 2nd White House Science Fair on February 7, 2012. The ExoMars missions were eliminated from the NASA budget announced on Feb. 13, 2012.

All of NASA’s “Flagship” Planetary Science missions have now been cancelled in the 2013 Fiscal Year Budget proposed on Feb. 13, and others missions have also been curtailed due to the severe economy.

“There is no room in the current budget proposal from the President for new Flagship missions anywhere,” said John Grunsfeld, NASA’s Associate Administrator for Science at a NASA budget briefing for the media on Feb. 13.

ESA is now looking to partner with Russia as all American participation in ExoMars is erased due to NASA’ s forced pull out.

On Feb. 13, NASA’s Fiscal 2013 Budget was announced and the Obama Administration carved away nearly half the Mars mission budget. Altogether, funding for NASA’s Mars and Planetary missions in the Fiscal 2013 budget would be sliced by $300 million – from $1.5 Billion this year to $1.2 Billion in 2013. NASA was forced to gut the Mars program to pay for the cost overruns of the James Webb Space Telescope.

Mars rover scientist Prof. Jim Bell of Arizona State University and President of The Planetary Society (TPS) told Universe Today that “no one expects increases”, but cuts of this magnitude are “cause for concern”.

NASA’s robotic missions to Mars and other solar system bodies have been highly successful, resulted in fundamental scientific breakthroughs and are wildly popular with students and the general public.

“With these large proposed cuts to the NASA Mars exploration program, there will be a lot of cause for concern,” said Bell.

“The Mars program has been one of NASA’s crown jewels over the past 15 years, both in terms of science return on investment, and in terms of public excitement and engagement in NASA’s mission. It would also represent an unfortunate retreat from the kind of international collaboration in space exploration that organizations like The Planetary Society so strongly support.”

NASA Budget Cuts in Fiscal Year 2013 will force NASA to kill participation in the joint ESA/NASA collaboration to send two Astrobiology related missions to orbit and land rovers on Mars in 2016 and 2018- designed to search for evidence of Life. Credit: ESA - Annotation: Ken Kremer

Bell and other scientists feel that any cuts should be balanced among NASA programs, not aimed only at one specific area.

“Certainly no one expects increasing budgets in these austere times, and it is not useful or appropriate to get into a battle of “my science is better than your science” among the different NASA Divisions and Programs.” Bell told me.

“However, it would be unfortunate if the burden of funding cuts were to befall one of NASA’s most successful and popular programs in a disproportionate way compared to other programs. As Ben Franklin said, “We should all hang together, or surely we will all hang separately.”

Bell added that science minded organizations should work with Congress to influence the debate over the coming months.

“Of course, this would only be an initial proposal for the FY13 and beyond budget. Over the winter, spring, and summer many professional and public organizations, like TPS, will be working with Congress to advocate a balanced program of solar system exploration that focuses on the most important science goals as identified in the recent NRC Planetary Decadal Survey, as well as the most exciting and publicly compelling missions that are supported by the public–who ultimately are the ones paying for these missions.”

“Let’s hope that we can all find a productive and pragmatic way to continue to explore Mars, the outer solar system, and our Universe beyond,” Bell concluded.

“The impact of the cuts … will be to immediately terminate the Mars deal with the Europeans,” said Scott Hubbard, of Stanford University and a former NASA planetary scientist who revived the agency’s Mars exploration program after failures in 1999, to the Washington Post. “It’s a scientific tragedy and a national embarrassment.”

“I encourage whoever made this decision to ask around; everyone on Earth wants to know if there is life on other worlds,” Bill Nye, CEO of The Planetary Society, said in a statement. “When you cut NASA’s budget in this way, you’re losing sight of why we explore space in the first place.”

“There is no other country or agency that can do what NASA does—fly extraordinary flagship missions in deep space and land spacecraft on Mars.” Bill Nye said. “If this budget is allowed to stand, the United States will walk away from decades of greatness in space science and exploration. But it will lose more than that. The U.S. will lose expertise, capability, and talent. The nation will lose the ability to compete in one of the few areas in which it is still the undisputed number one.”

Ed Weiler is NASA’s recently retired science mission chief (now replaced by Grunsfeld) and negotiated the ExoMars program with ESA. Weiler actually quit NASA specifically in opposition to the Mars Program cuts ordered by the Office of Management and Budget (OMB) and had these comments for CBS News;

“To me, it’s bizarro world,” Weiler said an interview with CBS News. “Why would you do this? The President of the United States, President Obama, declared Mars to be the ultimate destination for human exploration. Obviously, before you send humans to the vicinity of Mars or even to land on Mars, you want to know as much about the planet as you possibly can. … You need a sample return mission. The president also established a space policy a few years ago which had the concept of encouraging all agencies to have more and more foreign collaboration, to share the costs and get more for the same bucks.”

“Two years ago, because of budget cuts in the Mars program, I had to appeal to Europe to merge our programs. … That process took two long years of very delicate negotiations. We thought we were following the president’s space policy exactly. Congressional reaction was very positive about our activities. You put those factors in place and you have to ask, why single out Mars? I don’t have an answer.”

Space Analysts and Political leaders also weighed in:

“The president’s budget is just a proposal,” said Howard McCurdy, a space-policy specialist at American University in Washington to the Christian Science Monitor.

The cuts “reflect the new reality” in which the economy, budget deficits, and the federal debt have elbowed their way to the top of Washington’s agenda, McCurdy adds.

“You don’t cut spending for critical scientific research endeavors that have immeasurable benefit to the nation and inspire the human spirit of exploration we all have,” said Rep. John Culberson (R-Tex.). Texas is home to NASA’s Johnson Space Center.

Rep. Adam Schiff (D-CA), who represents the district that’s home to the Jet Propulsion Laboratory (JPL), released this statement following his meeting with NASA Administrator Charles Bolden to discuss the agency’s 2013 budget proposal:

“Today I met with NASA Administrator Charles Bolden to express my dismay over widespread reports that NASA’s latest budget proposes to dramatically reduce the planetary science program, and with it, ground breaking missions to Mars and outer planetary bodies like Jupiter’s icy moon Europa, and to inform him of my vehement opposition to such a move.”

“America’s unique expertise in designing and flying deep-space missions is a priceless national asset and the Mars program, one of our nation’s scientific crown jewels, has been a spectacular success that has pushed the boundaries of human understanding and technological innovation, while also boosting American prestige worldwide and driving our children to pursue science and engineering degrees in college.

“As I told the Administrator during our meeting, I oppose these ill-considered cuts and I will do everything in my power to restore the Mars budget and to ensure American leadership in space exploration.”

In an interview with the San Gabriel Valley Tribune, Schiff said, “What they’re proposing will be absolutely devastating to planetary science and the Mars program. I’m going to be fighting them tooth and nail. Unfortunately if this is the direction the administration is heading, it will definitely hurt JPL – that’s why I’m so committed to reversing this.”

NASA still hopes for some type of scaled back Mars missions in the 2016 to 2020 timeframe which will be outlined in an upcoming article.

In the meantime, the entire future of America’s Search for Life on the Red Planet now hinges on NASA’s Curiosity Mars Science Laboratory rover speeding thru interplanetary space and a pinpoint touchdown inside the layered terrain of Gale Crater on August 6, 2012.

Curiosity will be NASA’s third and last generation of US Mars rovers – 4th Generation Axed !

NASA’s Opportunity Rover is now Earth’s only surviving robot on Mars

Flawless Maiden Launch for Europe’s New Vega Rocket

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's South American Spaceport in French Guiana and deployed 9 science satellites. Credits: ESA - S. Corvaja

[/caption]

Europe scored a major space success with today’s (Feb. 13) flawless maiden launch of the brand new Vega rocket from Europe’s Spaceport in Kourou, French Guiana.

The four stage Vega lifted off on the VV01 flight at 5:00 a.m. EST (10:00 GMT, 11:00 CET, 07:00 local time) from a new launch pad in South America, conducted a perfectly executed qualification flight and deployed 9 science satellites into Earth orbit.

Vega is a small rocket launcher designed to loft science and Earth observation satellites.

Liftoff of Maiden Vega Rocket on Feb. 13, 2012 on VV01 flight from ESA Spaceport at French Guiana. Credit: ESA

The payload consists of two Italian satellites – ASI’s LARES laser relativity satellite and the University of Bologna’s ALMASat-1 – as well as seven picosatellites provided by European universities: e-St@r (Italy), Goliat (Romania), MaSat-1 (Hungary), PW-Sat (Poland), Robusta (France), UniCubeSat GG (Italy) and Xatcobeo (Spain).

On 13 February 2012, the first Vega lifted off on its maiden flight from Europe's Spaceport in French Guiana. Credits: ESA - S. Corvaja

Three of these cubesats were the first ever satellites to be built by Poland, Hungary and Romania. They were constructed by University students who were given a once in a lifetime opportunity by ESA to get practical experience and launch their satellites for free since this was Vega’s first flight.

The 30 meter tall Vega has been been under development for 9 years by the European Space Agency (ESA) and its partners, the Italian Space Agency (ASI), French Space Agency (CNES). Seven Member States contributed to the program including Belgium, France, Italy, the Netherlands, Spain, Sweden and Switzerland as well as industry.

Vega's first launch, dubbed VV01, occurred on Feb 13, 2012 from Europe's Spaceport in Kourou, French Guiana. It carried nine satellites into orbit: LARES, ALMASat-1 and seven Cubesats. Credits: ESA - J. Huart
ESA can now boast a family of three booster rockets that can service the full range of satellites from small to medium to heavy weight at their rapidly expanding South American Spaceport at the Guiana Space Center.

Vega joins Europe’s stable of launchers including the venerable Ariane V heavy lifter rocket family and the newly inaugurated medium class Russian built Soyuz booster and provides ESA with an enormous commercial leap in the satellite launching arena.

“In a little more than three months, Europe has increased the number of launchers it operates from one to three, widening significantly the range of launch services offered by the European operator Arianespace. There is not anymore one single European satellite which cannot be launched by a European launcher service,” said Jean-Jacques Dordain, Director General of ESA.

“It is a great day for ESA, its Member States, in particularly Italy where Vega was born, for European industry and for Arianespace.”

Dordain noted that an additional 200 workers have been hired in Guiana to meet the needs of Europe’s burgeoning space programs. Whereas budget cutbacks are forcing NASA and its contractors to lay off tens of thousands of people as a result of fallout from the global economic recession.

LARES, ALMASat-1 and CubeSats satellites integration for 1st Vega launch.
Credits: ESA, CNES, Arianespace, Optique Video du CSG, P. Baudon

ESA has already signed commercial contracts for future Vega launches and 5 more Vega rockets are already in production.

Vega’s light launch capacity accommodates a wide range of satellites – from 300 kg to 2500 kg – into a wide variety of orbits, from equatorial to Sun-synchronous.

“Today is a moment of pride for Europe as well as those around 1000 individuals who have been involved in developing the world’s most modern and competitive launcher system for small satellites,” said Antonio Fabrizi, ESA’s Director of Launchers.

ESA’s new Vega rocket fully assembled on its launch pad at Europe’s Spaceport in Kourou, French Guiana.

Inaugural Vega Rocket Poised at Europe’s South American Spaceport

1st Fully assembled Vega on launch pad for Inaugural Flight - February 2012. ESA’s new Vega rocket is now fully assembled on its launch pad. Final preparations are in full swing for the rocket’s inaugural flight as early as February 9 from Europe’s Spaceport in Kourou, French Guiana. Credits: ESA - S. Corvaja

[/caption]

Final preparations are in full swing for the inaugural flight of Europe’s new light launcher – the Vega booster – from the European Space Agency’s (ESA) Spaceport in Kourou, French Guiana. Launch crews are preparing the new rocket for blastoff as early as Feb 9, 2012 from the new Vega launch site at Kourou.

Vega has been under development for 9 years by ESA and its partners, Italian space agency ASI, French space agency CNES and industry.

The 30 meter tall Vega will join ESA’s venerable Ariane rocket family and the newly inaugurated Soyuz as the third class of booster rockets to launch from ESA’s rapidly expanding South American Spaceport at the Guiana Space Center.

1st Vega Rocket at pad. Credits: ESA - S. Corvaja, 2012

This gives ESA an enormous commercial leap and wide ranging capability to launch all types of satellites from small to big and heavy.

The 4 stage Vega rocket is now fully assembled at the launch pad for the initial qualification flight dubbed VV1. The launch window stretches for a few days beyond Feb. 9.

The Vega VV1 qualification flight will carry 9 satellites to orbit.

The payloads are housed inside the ‘upper composite’ composed of the payload fairing and adapter and were integrated on top of the AVUM fourth stage by pad workers on Jan. 24, who completed and verified all the electrical and mechanical connections and links.

Fully assembled Vega VV01 on pad. Credits: ESA - S. Corvaja, 2012

The satellites aboard include the LARES laser relativity satellite, ALMASat-1 from ASI and seven CubeSats from an assortment of European Universities.

Vega's upper composite, comprising LARES, ALMASat-1, seven CubeSats and the fairing, was transferred to the pad on 24 January and added to the vehicle at Europe's Spaceport in French Guiana. Credits: ESA - M. Pedoussaut, 2012

The main tasks remaining before the maiden flight are the final checkout of the assembled vehicle, the last launch countdown rehearsal and the fuelling of the restartable AVUM 4th stage with liquid propellants.

The Vega launch site is located at the previous ELA-1 complex, originally used for Ariane 1 and Ariane 3 missions and has been rebuilt and upgraded.

Fully assembled Vega VV01 on pad. Credits: ESA - S. Corvaja, 2012

The Vega rocket is specifically designed to fill a market gap in ESA’s satellite launch capabilities, namely the smaller, lightweight science and earth observation satellites.

It can launch payloads ranging from 300 kg to 2500 kg in mass, depending on the customers orbital requirements.

Vega affords ESA full market coverage by complementing the medium and heavy weight payload categories covered by the Soyuz and Ariane V rockets.

1st Fully assembled Vega on launch pad for Inaugural Flight - February 2012. Credits: ESA - S. Corvaja

Watch Universe Today for Vega maiden launch coverage and special launch pictures

Russia To Try Again For Phobos-Grunt?

Poster art for the Russian Phobos-Grunt mission. Russian Federal Space Agency)/IKI

[/caption]

Russia says “eish odin ras”* for its Mars moon lander mission, according to Roscomos chief Vladimir Popovkin.

If the European Space Agency does not include Russia in its ExoMars program, a two-mission plan to explore Mars via orbiter and lander and then with twin rovers (slated to launch in 2016 and 2018, respectively), Roscosmos will try for a “take-two” on their failed Phobos-Grunt mission.

“We are holding consultations with the ESA about Russia’s participation in the ExoMars project… if no deal is reached, we will repeat the attempt,” said Popovkin on Tuesday.

Phobos-Grunt, an ambitious mission to land on the larger of Mars’ two moons, collect samples and return them to Earth, launched successfully on November 9, 2011. It became caught in low-Earth orbit shortly afterwards, its upper-stage engines having failed to ignite.

Read more about the tragic end of the Phobos-Grunt mission here.

After many attempts to communicate with the stranded spacecraft, Phobos-Grunt re-entered the atmosphere and impacted on January 15. Best estimates place the impact site in the Pacific Ocean off the coast of southern Chile.

The failed mission also included a Chinese orbiter and a life experiment from The Planetary Society.

Russia is offering ESA the use of a Proton launch vehicle for inclusion into the ExoMars mission, now that the U.S. has canceled its joint participation and Atlas carrier. Roscomos and ESA are scheduled to discuss the potential partnership in February.

(News via RIA Novosti)

*Phonetic pronunciation for “one more time.” Thanks to my friend Dima for the Russian lesson!

Russia Opens Talks With NASA And ESA With Plans For Manned Lunar Base

Multiple images of the International Space Station flying over the Houston area have been combined into one composite image to show the progress of the station as it crossed the face of the moon in the early evening of Jan. 4. (Lauren Harnett)

[/caption]

On January 19, 2012, Roscosmos, the Russian Space Agency began talking to the United States and Europe about the stuff dreams are made of… a manned research base on the Moon. The agency’s chief, Vladimir Popovkin, led off the discussion with officials from NASA and the European Space Agency for a permanent facility. “We don’t want man to just step on the Moon,” Popovkin told Vesti FM radio station, according to the Ria Novosti news agency. “Today, we know enough about it, we know that there is water in its polar areas … we are now discussing how to begin [the Moon’s] exploration with NASA and the European Space Agency.”

But that’s not all. One giant leap for mankind often begins with one small step – or two. In this instance, Russia is planning to launch two unmanned missions to the Moon within the next 8 years. According to Popovkin, the plan is to either set up a stationary base on the lunar surface, or to put a working laboratory into orbit around it.

Don’t shoot these comments down just because they’ve come to light after a recent run of bad luck on behalf of Russia’s current space missions – most notably the doomed Mars probe Phobos-Grunt which crashed back to Earth following a malfunction. According to Fix News, “It was the latest mishap for Roscosmos and came after Russian president Dmitry Medvedev threatened to punish those responsible for previous space failures, which included the loss of satellites and botched launches.”

In the meantime, let’s focus on the positive contributions the Russians have made towards lunar exploration – in particular, the Luna missions which set many milestones. Of these, they were the first to successfully land a craft of the Moon, the first to photograph the far side, the first to achieve a soft landing and send back panoramic, close-up images, the first to become an artificial lunar satellite, the first to deploy rover missions and the first to return lunar soil samples which they shared with the international scientific community.

Russia? Keep talking… Spasiba for your contributions!

Original Story Source: Fox DC News.