Early Faint Sun Paradox Explained?

Titan's thick haze. Image: NASA/JPL/Space Science Institute.

[/caption]

Models of the Sun’s evolution indicate it was as much as 30 percent less luminous during Earth’s early history than it is now. But, somehow the surface of the planet was warm enough for primordial life to emerge. A new study and a look at Saturn’s moon Titan has provided clues for how the Sun could have kept the early Earth warm enough. Scientists say a thick organic haze that enshrouded early Earth several billion years ago may have been similar to the haze that covers Titan and would have protected emerging life on the planet from the damaging effects of ultraviolet radiation, while warming the planet, as well.

Eric Wolf from the University of Colorado-Boulder and his team believe the organic haze was made up primarily of methane and nitrogen chemical byproducts created by reactions with light. If the particles clumped together in larger, complex structures, an arrangement known as a fractal size distribution, then the smallest particles would interact with the shortwave radiation, while the larger structures made out of the smaller particles would affect longer wavelengths. Not only would the haze have shielded early Earth from UV light, it would have allowed gases like ammonia to build up, causing greenhouse warming and perhaps helped to prevent the planet from freezing over.

Other researchers including Carl Sagan have proposed possible solutions to this “Early Faint Sun” paradox, which generally involved atmospheres with powerful greenhouse gases that could have helped insulate the Earth. But while those gases would have blocked the radiation, it wouldn’t have warmed Earth enough for life to form.

“Since climate models show early Earth could not have been warmed by atmospheric carbon dioxide alone because of its low levels, other greenhouse gases must have been involved,” said Wolf. “We think the most logical explanation is methane, which may have been pumped into the atmosphere by early life that was metabolizing it.”

Lab simulations helped researchers conclude that the Earth haze likely was made up of irregular “chains” of aggregate particles with greater geometrical sizes, similar to the shape of aerosols believed to populate Titan’s thick atmosphere. The arrival of the Cassini spacecraft at Saturn in 2004 has allowed scientists to study Titan, the only moon in the solar system with both a dense atmosphere and liquid on its surface.

During the Archean period there was no ozone layer in Earth’s atmosphere to protect life on the planet, said Wolf. “The UV shielding methane haze over early Earth we are suggesting not only would have protected Earth’s surface, it would have protected the atmospheric gases below it — including the powerful greenhouse gas, ammonia — that would have played a significant role in keeping the early Earth warm.”

The researchers estimated there were roughly 100 million tons of haze produced annually in the atmosphere of early Earth during this period. “If this was the case, an early Earth atmosphere literally would have been dripping organic material into the oceans, providing manna from heaven for the earliest life to sustain itself,” said team member Brian Toon, also from CU-Boulder.

“Methane is the key to make this climate model run, so one of our goals now is to pin down where and how it originated,” said Toon. If Earth’s earliest organisms didn’t produce the methane, it may have been generated by the release of gasses during volcanic eruptions either before or after life first arose — a hypothesis that will requires further study.

This new study will likely re-ignite interest in a controversial experiment by scientists Stanley Miller and Harold Urey in the 1950s in which methane, ammonia, nitrogen and water were combined in a test tube. After Miller and Urey ran an electrical current through the mixture to simulate the effects of lightning or powerful UV radiation, the result was the creation of a small pool of amino acids — the building blocks of life.

“We still have a lot of research to do in order to refine our new view of early Earth,” said Wolf. “But we think this paper solves a number of problems associated with the haze that existed over early Earth and likely played a role in triggering or at least supporting the earliest life on the planet.”

Sources: CU-Boulder, Science

Earth Hour 2010

Where will you be when the lights go out? Earth Hour 2010 will take place on Saturday, March 27 at 8:30 pm local time. Even though it will spark a tirade of controversy just asking folks to turn off their lights for one hour, let’s see who would rather fight than turn off a switch. In 2009 hundreds of millions of people around the world showed their support and Earth Hour 2010 will continue to be a global call to action to every individual, every business and every community. A call to stand up, to show leadership and be responsible for our future. Do you have what it takes to make such a simple gesture?

Then let’s rock the house…

Earth Hour started in 2007 in Sydney, Australia when 2.2 million homes and businesses turned their lights off for one hour to make their stand against climate change. A year later Earth Hour had become such a global force that more than 50 million people in 35 countries showed their support by switch off for a simple 60 minutes. Icons stood in dark silence as Sydney Harbour Bridge, The CN Tower in Toronto, The Golden Gate Bridge in San Francisco, and Rome’s Colosseum, all did their part as symbols of hope for the future.

Can you still use your imagination? Can you? Then imagine Earth Hour from space…

This year China’s Forbidden City heads up a list of some of the world’s most iconic landmarks that have confirmed their participation in Earth Hour – including The Great Pyramids of Giza and the Sphinx. They will be joined by Italy’s Trevi Fountain in Rome and Leaning Tower of Pisa, Big Ben and Houses of Parliament in London, Edinburgh Castle in Scotland, India Gate and Red Fort in Delhi, Victoria Falls in Zimbabwe, Bosphorous Bridge in Istanbul, Hohensalzburg Castle in Salzburg, and Independence Angel in Mexico City. They join a comprehensive list of the world’s great man-made marvels and natural wonders, including the Eiffel Tower, Brandenburg Gate, Hiroshima Peace Memorial, Empire State Building, London Eye, Table Mountain, Christ the Redeemer statue, Sydney Opera House and the world’s tallest building, Burj Khalifa, which will plunge into darkness for Earth Hour

Before you say “Why bother?” or “My contribution won’t make a difference.”, then think on this… Earth Hour has truly managed to raise our awareness of climate change issues. But there’s more to it than switching off your lights for one hour once a year. It’s all about giving people a voice on the future of our planet and working together. Even if you’d rather fight than flick the switch… you are participating. Whether you are an individual, a business, a school or a city, you can show your support for Earth Hour by turning off your lights at 8.30 pm on March 27 wherever you are on the planet. No one is saying you can’t use your computer or watch television. Bake a pizza and eat it by candlelight with your family! All it takes is the guts to show you understand and care enough to take action.

Do you have what it takes to flip the switch?

Unexpected Life Found Under Antarctic Ice

Researchers in Antarctica got a surprise visit from a creature in a borehole 185 meters (600 feet) below the Antarctic ice, where there is usually no light. A Lyssianasid amphipod, a shrimp-like creature can be seen swimming in this video. A NASA team had lowered a small video camera to get the first-ever photograph of the underside of an ice shelf when the curious little 7 cm (3- inch) shrimp stopped by to check out the equipment. Scientists say this could challenge the idea of where and how forms of life can survive. Anyone else thinking Europa?
Continue reading “Unexpected Life Found Under Antarctic Ice”

Best “Blue Marble” Images Yet

Our "Blue Marble." Credit: NASA

[/caption]

The Goddard Space Flight Center has a Flickr account showcasing a series of images of our own home planet. Called “Blue Marble,” these spectacular images are the most detailed true-color image of the entire Earth to date. Using a collection of satellite-based observations, scientists and visualizers stitched together months of observations in 2001 of the land surface, oceans, sea ice, and clouds into a seamless, true-color mosaic of every square kilometer (.386 square mile) of our planet. Your tax dollars at work, these images are freely available to educators, scientists, museums, and the public. This record includes preview images and links to full resolution versions up to 21,600 pixels across.

Our blue marble. Credit: NASA

Compare these new images to the original “Blue Marble” photograph, below, taken by the Apollo 17 crew in 1968.

The original Blue Marble by Apollo 17.

Chilean Earthquake May Have Shortened the Length of a Day on Earth

This view of Earth comes from NASA's Moderate Resolution Imaging Spectroradiometer aboard the Terra satellite.

[/caption]

Yikes! Just how big was the magnitude 8.8 earth quake in Chile? One scientist says the shaking may have affected the entire planet by shifting Earth on its axis. This possibly may have shortened the length of a day on Earth by about 1.26 microseconds. Using a complex model JPL research scientist Richard Gross computed how Earth’s rotation should have changed as a result of the Feb. 27, 2010 quake. If his figures are correct, the quake should have moved Earth’s figure axis (the axis about which Earth’s mass is balanced) by 2.7 milliarcseconds (about 8 centimeters, or 3 inches).

Earth’s figure axis is not the same as its north-south axis; they are offset by about 10 meters (about 33 feet). By comparison, Gross said the same model estimated the 2004 magnitude 9.1 Sumatran earthquake should have shortened the length of day by 6.8 microseconds and shifted Earth’s axis by 2.32 milliarcseconds (about 7 centimeters, or 2.76 inches).

Gross said that even though the Chilean earthquake is much smaller than the Sumatran quake, it is predicted to have changed the position of the figure axis by a bit more for two reasons. First, unlike the 2004 Sumatran earthquake, which was located near the equator, the 2010 Chilean earthquake was located in Earth’s mid-latitudes, which makes it more effective in shifting Earth’s figure axis.

Second, the fault responsible for the 2010 Chiliean earthquake dips into Earth at a slightly steeper angle than does the fault responsible for the 2004 Sumatran earthquake. This makes the Chile fault more effective in moving Earth’s mass vertically and hence more effective in shifting Earth’s figure axis.

Gross said the Chile predictions will likely change as data on the quake are further refined.

Source: JPL

Does Zonal Swishing Play a Part in Earth’s Magnetic Field Reversals?

Zonal swishing in the Earth's outer core (Credit: Akira Kageyama, Kobe University)

[/caption]
Why does the Earth’s magnetic field ‘flip’ every million years or so? Whatever the reason, or reasons, the way the liquid iron of the Earth’s outer core flows – its currents, its structure, its long-term cycles – is important, either as cause, effect, or a bit of both.

The main component of the Earth’s field – which defines the magnetic poles – is a dipole generated by the convection of molten nickel-iron in the outer core (the inner core is solid, so its role is secondary; remember that the Earth’s core is well above the Curie temperature, so the iron is not ferromagnetic).

But what about the fine structure? Does the outer core have the equivalent of the Earth’s atmosphere’s jet streams, for example? Recent research by a team of geophysicists in Japan sheds some light on these questions, and so hints at what causes magnetic pole flips.

About the image: This image shows how an imaginary particle suspended in the liquid iron outer core of the Earth tends to flow in zones even when conditions in the geodynamo are varied. The colors represent the vorticity or “amount of rotation” that this particle experiences, where red signifies positive (east-west) flow and blue signifies negative (west-east) flow. Left to right shows how the flow responds to increasing Rayleigh numbers, which is associated with flow driven by buoyancy. Top to bottom shows how flow responds to increasing angular velocities of the whole geodynamo system.

The jet stream winds that circle the globe and those in the atmospheres of the gas giants (Jupiter, Saturn, etc) are examples of zonal flows. “A common feature of these zonal flows is that they are spontaneously generated in turbulent systems. Because the Earth’s outer core is believed to be in a turbulent state, it is possible that there is zonal flow in the liquid iron of the outer core,” Akira Kageyama at Kobe University and colleagues say, in their recent Nature paper. The team found a secondary flow pattern when they modeled the geodynamo – which generates the Earth’s magnetic field – to build a more detailed picture of convection in the Earth’s outer core, a secondary flow pattern consisting of inner sheet-like radial plumes, surrounded by westward cylindrical zonal flow.

This work was carried out using the Earth Simulator supercomputer, based in Japan, which offered sufficient spatial resolution to determine these secondary effects. Kageyama and his team also confirmed, using a numerical model, that this dual-convection structure can co-exist with the dominant convection that generates the north and south poles; this is a critical consistency check on their models, “We numerically confirm that the dual-convection structure with such a zonal flow is stable under a strong, self-generated dipole magnetic field,” they write.

This kind of zonal flow in the outer core has not been seen in geodynamo models before, due largely to lack of sufficient resolution in earlier models. What role these zonal flows play in the reversal of the Earth’s magnetic field is one area of research that Kageyama and his team’s results that will now be able to be pursued.

Sources: Physics World, based on a paper in the 11 February, 2010 issue of Nature. Earth Simulator homepage

NASA Sun Probe rolled to Pad; 10 hours to Blast off

Launch Complex 41: Atlas rocket was rolled from VIF at left to pad at right on Feb 9, 2010. Credit: Ken Kremer

[/caption]

(Editor’s Note: Ken Kremer is at the Kennedy Space Center for Universe Today covering the launch of SDO and Endeavour.)

NASA’s nearly $1 Billion hi tech sun probe, the Solar Dynamics Observatory or SDO, was rolled out today (Feb 9) to Launch Pad 41 on a rainy day here in Florida at 1 day from blast off. SDO will be carried aloft atop an Atlas V rocket at 10:26 AM EST on Feb 10 at Cape Canaveral Air Force Station. The launch window extends for 1 hour. The current weather prediction is only 40% “GO”. The primary concerns for launch day are ground winds with gusts and thick clouds.

NASA’s SDO sun explorer is encapsulated inside 4 meter payload fairing and is bolted atop Centaur Upper Stage of Atlas V rocket at Launch Complex 41. Umbilical lines at right carry cryogenic propellants, electrical power and purge gases. Credit: Ken Kremer
At the Kennedy Space Center, I was thrilled to watch the rocket rollout to the pad this morning as part of a NASA Media event along with Universe Today Senior Editor Nancy Atkinson. We were accompanied by a group of SDO managers and science investigators from across the country. The rollout started from inside the 30 story gantry known as the VIF, or Vertical Integration Facility, and ended at the launch pad. It took approximately 35 minutes for the twin “trackmobiles” to push the Atlas rocket about 1800 ft along railroad tracks.

Atlas V booster is 12.5 ft in diameter and 106.5 ft in length. Centaur Upper Stage is 10 ft in diameter and 41.5 ft long. SDO payload fairing is 14 ft in diameter. Total Vehicle height is about 189 ft. Credit: Ken Kremer
This afternoon I traveled directly inside the highly restricted security zone which surrounds Launch Complex 41 for a photo shoot to observe the assembled Atlas V rocket and SDO spacecraft directly at the pad. Fantastic experience despite the rainstorm.

SDO, Atlas V and Ken in ditch below rocket less than 24 hours from blast off. Credit: Ken Kremer

SDO project scientist Dean Pesnell told me in an interview today that “SDO will acquire movies of the entire surface of the Sun on a 24/7 basis with 10 times greater resolution than High Definition. That’s about equivalent in size to an IMAX movie”. The three science instruments will collect a staggering 1.5 terabytes of data per day which is equivalent to downloading 500,000 songs. The data will be beamed back continuously to two dedicated ground stations in New Mexico which were specially constructed for SDO. There are no on board recorders due to the huge volume of data.

“It’s perfect timing to launch and study the sun as it starts the rise to a solar maximum,” according to Pesnell. “The sun patiently waited for us to be ready to launch as we waited for a launch opportunity. After a long period of inactivity, Sun spots recently started appearing at the North Pole. And they also just started at the South Pole”.

“SDO was conceived by the scientists around 1996 and formally approved by NASA in 2002”, Prof. Phillip Scherrer said to me. He is the Principal Investigator for the Helioseismic and Magnetic Imager (HMI) instrument.

“The primary mission phase will last 5 years and hopefully extend out to 10 and perhaps even longer. The longevity depends on the health of the science instruments. Remember SOHO was projected to last 2 years and has now operated for over 15 years ! “

HMI will study the origin of solar variability and attempt to characterize and understand the Sun’s interior and magnetic activity.

Both HMI, and the Atmospheric Imaging Assembly, or AIA, will allow scientists to see the entire disc of the sun in very high resolution — 4,096 by 4,096 mm CCDs. In comparison, a standard digital camera uses a 7.176 by 5.329 mm CCD sensor.

AIA also will image the outer layer of the sun’s atmosphere, while the Extreme ultraviolet Variability Experiment, or EVE, measures its ultraviolet spectrum every 10 seconds, 24 hours a day.

We are now less than 12 hours from launch of SDO, NASA’s “New Eye on the Sun”.

Read my earlier SDO reports, including from on site at the KSC launch pads for both SDO and STS 130.

NASA’s Solar Crown Jewel Bolted atop Atlas Rocket

NASA advanced Solar Observatory nearing February launch; will send IMAX like movies daily

Learn more at the NASA SDO Website

See a cool new video explaining SDO here:
The Solar Dynamics Observatory in 3.5 Minutes

Atlas rocket has been rolled to pad 41 on Feb 8, 2010 and is locked in place surrounded by four lightening masts. Credit: Ken Kremer
Atlas V rocket begins the 1800 ft rollout from VIF to Pad 41. Credit: Ken Kremer

NASA advanced Solar Observatory nearing February launch; will send IMAX like movies daily

SDO and two piece payload fairing inside “clean room” at Astrotech Spaceflight facility near KSC on Jan 21. Fairing protects spacecraft during ascent through earths atmosphere. Credit: Ben Cooper/Spaceflight Now

[/caption]

NASA’s new solar science satellite, dubbed the Solar Dynamics Observatory, or SDO, moved an important step closer to launch when it was encapsulated inside its two piece payload fairing on Thursday (Jan 21) at the Astrotech Space Operations Facility nearby to the Kennedy Space Center (KSC). SDO is the most sophisticated spacecraft ever designed and constructed to study the sun and its dynamic behavior.

Liftoff of SDO aboard an Atlas V rocket from Cape Canaveral Air Force Station is targeted for Feb 9, just 2 days after the shuttle Endeavour blasts off with the Tranquility module and heads for the ISS.

“SDO will revolutionize our view of the sun. It will reveal how solar activity affects our planet and help us anticipate what lies ahead”, said Madhulika Guhathakurta at a Jan 21 press briefing. She is the SDO program scientist at NASA Headquarters.

The enclosed observatory will be transported on a specially designed trailer to Launch Complex 41 on Tuesday (Jan. 26) and then be hoisted up and bolted atop the two stage booster rocket. The 19 story tall Atlas V will propel the 8,800 pound spacecraft into an inclined geosynchronous orbit where it will study the sun in multiple wavelengths during its 5 year primary mission. It carries sufficient fuel to operate for another 5 years.

An Atlas rocket similar to this vehicle I observed at Cape Canaveral Pad 41 will launch SDO. Credit: Ken Kremer
SDO arrived at KSC on July 9 for final processing, testing and fueling operations. It was shipped from NASA’s Goddard Space flight Center where it was built by teams of technicians, engineers and scientists at a cost of $848 million.

SDO is the first spacecraft to be launched as part of NASA’s Living with a Star (LWS) science program initiative. The goal is to better understand the causes of solar variability and to create better forecasts for predicting “space weather” which directly affects the Earth and all life inhabiting it. Furthermore, this information will be used to help protect and provide early warning to valuable satellites operating in space as well as astronaut crews working aboard the International Space Station.

When active regions on the sun erupt suddenly and violently in the form of a solar flare or coronal mass ejection (CME), they hurl millions of tons of solar material and charged particles toward Earth which can damage orbiting satellites, disrupt navigation systems and cause failures in the power grid.

SDO is equipped with 3 science instruments which will measure and characterize in-depth the Suns interior and atmosphere, magnetic field, hot plasma of the solar corona and the density of the radiation that creates the ionosphere of the planets.

SDO will collect huge volumes of data which amount to a staggering 1.5 terabytes per day. This is the equivalent of downloading a half million songs each day or filling a CD every 36 seconds. “That’s almost 50 times more science data than any other mission in NASA history”, says Dean Pesnell, the SDO project scientist at NASA Goddard.

SDO is enclosed in its payload fairing and ready for transport on Jan 26 to Atlas V launch pad. Credit: NASA/Jim Grossman
“SDO is going to send us images ten times better than high definition television” according to Pesnell. “The pixel count is comparable to an IMAX movie — an IMAX filled with the raging sun, 24 hours a day.”

“We’ll be getting IMAX-quality images every 10 seconds,” says Pesnell. “We’ll see every nuance of solar activity.” Because no orbiting spacecraft has ever come even close to this incredible speed, there is a vast potential for ground breaking science discoveries. Scientists hope to learn how storms are generated inside the sun and how they then evolve and propagate outwards through the suns atmosphere and towards earth and the rest of the solar system.

Since SDO has no on-board recording system, the data will be transmitted continuously on a 24/7 basis to dedicated receiving stations on the ground in New Mexico as it maintains position over 22,000 miles high above earths equator.

I will be reporting on site from the Kennedy Space Center in February and directly from the launch pads for both SDO and STS 130. See my earlier STS 130 reports here.

NASA SDO Website

Deep, Fiery Undersea Volcano Captured on Video

The orange glow of magma is visible on the left of the sulfur-laden plume. The area shown in this image is approximately six feet across in an eruptive area approximately the length of a football field that runs along the summit. (Image courtesy of NSF, NOAA, and WHOI Advanced Imaging and Visualization Lab)

Ever seen fire and smoke under water before? Oceanographers using a remotely operated underwater vehicle discovered and recorded the first video and still images of the deepest underwater volcano actively erupting molten lava on the seafloor. The ROV Jason vehicle captured the powerful event nearly 1.2 km (4,000 feet) below the surface of the Pacific Ocean, in the “Ring of Fire” region, near Fiji, Tonga and Samoa. “It was very exciting. We’ve never seen anything like that on the ocean floor,” said Bob Embley, a marine geologist with NOAA, who described the event an underwater Fourth of July. “When we started to see red flashes of light, everyone was extremely excited. Then we had to get down to the work of actually understanding of what we were seeing.”

The scientists presented their findings, along with HD video at the American Geophysical Union’s fall meetings in San Fransciso. The video was taken in May of 2009, and the science team said the undersea volcano is likely to still be erupting, and may have started activity in late 2008.

[/caption]

Embly said the eruption couldn’t be seen above the water, but there were “water column anomlies which indicated an eruption going on. We knew within a few hundred feet where the eruption was taking place.”

There were actually two erupting regions, but the video shows the most dramatic one. Visible in the video is magma – sometimes fiery, red hot at 1,371 C (2,500 degrees F) – bursting up through the seawater, with fragments of rock being propelled and magma flowing down the slope of the volcano. Hot sulfer “smoke” plumes can also be seen.

The volcano is spewing a type of lava known as Boninite, which until now had only been seen in extinct volcanoes more than a million years old.

A underwater “hydrophone” recorded the sound, and it was synched with the video.

The ROV Jason is designed and operated by the Woods Hole Oceanographic Institution for the National Deep Submergence Facility.

Samples collected near the volcano showed the seawater to be highly acidic, similar to battery or stomach acid, the researchers said. Despite the harsh conditions, scientists found and photographed a species of shrimp apparently thriving near the volcanic vents.

“Nobody would have predicted that things would have survived long enough in water that acidic. It seems like it’s too harsh a condition,” said University of Washington chemical oceanographer Joseph Resing.

They hope to go back in a few months and see all the other creatures that have taken up residence there.

Sources: WHOI, NOAA, NSF, AGU press conference

Earth’s Atmosphere Came from Outer Space

A new study from the University of Heidelberg suggests that flash-heating and carbon depletion could have been intrinsic to the emergence and evolution of life on Earth. Credit: NASA

[/caption]

A new study finds the gases which formed the Earth’s atmosphere – as well as its oceans – did not come from inside the Earth but from comets and meteorites hitting Earth during the Late Heavy Bombardment period. A research team tested volcanic gases to uncover the new evidence. “We found a clear meteorite signature in volcanic gases,” said Dr. Greg Holland the project’s lead scientist. “From that we now know that the volcanic gases could not have contributed in any significant way to the Earth’s atmosphere. Therefore the atmosphere and oceans must have come from somewhere else, possibly from a late bombardment of gas and water rich materials similar to comets.”

Holland said textbook images of ancient Earth with huge volcanoes spewing gas into the atmosphere will have to be rethought.

According to the theory of the Late Heavy Bombardment, the inner solar system was pounded by a sudden rain of solar system debris only 700 million years after it formed, which likely had monumental effects on the nascent Earth. So far, the evidence for this event comes primarily from the dating of lunar samples, which indicates that most impact melt rocks formed in this very narrow interval of time. But this new research on the origin of Earth’s atmosphere may lend credence to this theory as well.

The researchers analyzed the krypton and xenon found in upper-mantle gases leaking from the Bravo Dome gas field in New Mexico. They found that the two noble gases have isotopic signatures characteristic of early Solar System material similar to me teorites instead of the modern atmosphere and oceans. It therefore appears that noble gases trapped within the young Earth did not contribute to Earth’s later atmosphere.
The study is also the first to establish the precise composition of the Krypton present in the Earth’s mantle.

“Until now, no one has had instruments capable of looking for these subtle signatures in samples from inside the Earth – but now we can do exactly that,” said Holland.

The team’s research, “Meteorite Kr in Earth’s Mantle Suggests a Late Accretionary Source for the Atmosphere” was published in the journal Science.

Sources: Science, EurekAlert