What Would Happen to Earth if a Rogue Star Came Too Close?

The speeding rogue star Kappa Cassiopeiae sets up a glowing bow shock in this Spitzer image (NASA/JPL-Caltech)

Stars are gravitationally fastened to their galaxies and move in concert with their surroundings. But sometimes, something breaks the bond. If a star gets too close to a supermassive black hole, for example, the black hole can expel it out into space as a rogue star.

What would happen to Earth if one of these stellar interlopers got too close?

Continue reading “What Would Happen to Earth if a Rogue Star Came Too Close?”

If You’re Trying to Prevent an Asteroid Impact, the Technical and Political Challenges are Staggering

Asteroids are out there, and some pose a threat to Earth. How will we react when we determine that one's coming for us? Credit: N. Bartmann (ESA/Webb), ESO/M. Kornmesser and S. Brunier, N. Risinger (skysurvey.org)

While preparing for the threat of an asteroid strike might seem like a hypothetical exercise, it’s really not. The Solar System has calmed down a lot from earlier times when impacts were more frequent. But it is only a matter of time before an asteroid heads straight for Earth. The probability of an impact is not zero.

Equally as difficult as determining when one will come for us is the task of getting humanity to cooperate and prepare for it.

Continue reading “If You’re Trying to Prevent an Asteroid Impact, the Technical and Political Challenges are Staggering”

Earth’s Past and Future Habitability Depends on Our Protection from Space Weather

Sun with a huge coronal mass ejection. Image credit: NASA

A bewildering number of factors and variables led up to the planet we occupy today, where life finds a way to survive and even thrive in the most marginal conditions. The Sun is the catalyst for it all, propelling life on its journey to greater complexity with its steady fusion.

But the Sun is only benign because of Earth’s built-in protection, the magnetosphere. Both the Sun and the magnetosphere have changed over time, with each one’s strength ebbing and flowing. The Sun drives powerful space weather our way, and the magnetosphere shields the Earth.

How have these two phenomena shaped Earth’s habitability?

Continue reading “Earth’s Past and Future Habitability Depends on Our Protection from Space Weather”

Earth is Hiding Another Planet Deep Inside

During an ancient collision, the protoplanet named Theia slammed into Earth, leading to the creation of the Moon. But it left some of its remains inside Earth. Image Credit: CalTech

Earth’s early history is marked by massive collisions with other objects, including planetesimals. One of the defining events in our planet’s history, the formation of the Moon, likely resulted from one of these catastrophic collisions when a Mars-sized protoplanet crashed into Earth. That’s the Giant Impact Hypothesis, and it explains how the collision produced a torus of debris rotating around the Earth that eventually coalesced into our only natural satellite.

New research strengthens the idea that Theia left some of its remains inside Earth.

Continue reading “Earth is Hiding Another Planet Deep Inside”

Devastating Clouds of Dust Helped End the Reign of the Dinosaurs

Paleoart reconstruction depicting North Dakota in the first months following the Chicxulub impact event 66 million years ago, showing a dark, dusty, and cold world in which the last non-avian dinosaurs, illustrated with a Dakotaraptor steini, were on the edge of extinction. Artwork by Mark A. Garlick.

When a giant meteor crashed into Earth 66 million years ago, the impact pulverized cubic kilometers of rock and blasted the dust and debris into the Earth’s atmosphere. It was previously believed that sulfur from the impact and soot from the global fires that followed drove a global “impact winter” that killed off 75% of species on Earth, including the dinosaurs.

A new geology paper says that the die-off was additionally fueled by ultrafine dust created by the impact which filled the atmosphere and blocked sunlight for as long as 15 years. Plants were unable to photosynthesize and global temperatures were lowered by 15 degrees C (59 F).

Continue reading “Devastating Clouds of Dust Helped End the Reign of the Dinosaurs”

Venus Might Have Had Plate Tectonics Just Like Earth

Radar image of Venus created by the Solar System Visualization project and the Magellan science team at the JPL Multimission Image Processing Laboratory. Credit: NASA/JPL.

Even though Venus is very similar to Earth in many ways, it’s a hell-world with a runaway greenhouse effect. It was assumed this was because it lacked plate tectonics like Earth to sequester carbon inside the planet. A new study suggests that the high nitrogen and argon in its atmosphere are evidence from outgassing when it had plate tectonics billions of years ago. This could mean that Venus was habitable for a long time before something went horribly wrong.

Continue reading “Venus Might Have Had Plate Tectonics Just Like Earth”

In 250 Million Years, a Single Supercontinent will Form, Wiping Out Nearly all Mammals

Figure 1 from the study displaying the warmest month average temperature (degrees Celsius) for Earth and the hypothesized supercontinent, Pangea Ultima, 250 million years from now, which the researchers hypothesize would make life for most mammals extremely difficult. (Credit: University of Bristol)

A recent study published in Nature Geoscience uses supercomputer climate models to examine how a supercontinent, dubbed Pangea Ultima (also called Pangea Proxima), that will form 250 million years from now will result in extreme temperatures, making this new supercontinent uninhabitable for life, specifically mammals. This study was conducted by an international team of researchers led by the University of Bristol and holds the potential to help scientists better understand how Earth’s climate could change in the distant future from natural processes, as opposed to climate change.

Continue reading “In 250 Million Years, a Single Supercontinent will Form, Wiping Out Nearly all Mammals”

How Do Lava Worlds Become Earth-Like, Living Planets?

This is an artist's illustration of Kepler-10 b, a suspected magma ocean planet about 560 light years away. Image Credit: NASA/Kepler Mission/Dana Berry

Earth was once entirely molten. Planetary scientists call this phase in a planet’s evolution a magma ocean, and Earth may have had more than one magma ocean phase. Earth cooled and, over 4.5 billion years, became the vibrant, life-supporting world it is today.

Can the same thing happen to exo-lava worlds? Can studying them shed light on Earth’s transition?

Continue reading “How Do Lava Worlds Become Earth-Like, Living Planets?”

Gaia is Now Finding Planets. Could it Find Another Earth?

Artist's impression of the ESA's Gaia Observatory. Credit: ESA

The ESA launched Gaia in 2013 with one overarching goal: to map more than one billion stars in the Milky Way. Its vast collection of data is frequently used in published research. Gaia is an ambitious mission, though it seldom makes headlines on its own.

But that could change.

Continue reading “Gaia is Now Finding Planets. Could it Find Another Earth?”

Engineers Want to Make Methanol by Pulling Carbon Right Out of the Air

Researchers at Western Virginia University are working on a method of extracting carbon out of exhausted air from office buildings and using it to make methanol. Image Credit: WVU Illustration/Savanna Leech

Methanol is one of our most extensively used raw materials. It’s used as a solvent, a pesticide, and in combination with other chemicals in the manufacture of plastic, clothing, plywood, and in pharmaceuticals and agrochemicals.

It’s also used as a fuel.

Continue reading “Engineers Want to Make Methanol by Pulling Carbon Right Out of the Air”