Stare Down from Space into the Churning Maw of Hurricane Florence

Even if you know nothing about hurricanes, an unavoidable sense of doom and destruction overtakes you when you look at this image of Hurricane Florence as it moves inexorably toward North and South Carolina.

Even if you didn’t know that the powerful storm is forecast to gain strength as it hits the coast on Friday, or that it will dump several months of rain onto the region in a mere few days, or that the storm surge could reach as high as 9 to 13 ft. If you didn’t know all those things, the picture of Florence taken from space would still fill you with foreboding.

Continue reading “Stare Down from Space into the Churning Maw of Hurricane Florence”

Estimating When Life Could Have Arisen on Earth

The question how life began on Earth has always been a matter of profound interest to scientists. But just as important as how life emerged is the question of when it emerged. In addition to discerning how non-living elements came together to form the first living organisms (a process known as abiogenesis), scientists have also sought to determine when the first living organisms appeared on Earth.

Continue reading “Estimating When Life Could Have Arisen on Earth”

Look at all the Aerosols Pushed into the Atmosphere, from Fires, Volcanoes and Pollution. Even Sea Salt Thrown into the Air from Hurricanes

Stand outside and take deep breath. Do you know what you’re breathing? For most people, the answer is simple – air. And air, which is essential to life as we know it, is composed of roughly twenty-percent oxygen gas (O²) and seventy-eight percent nitrogen gas (N²). However, within the remaining one-percent and change are several other trace gases, as well as few other ingredients that are not always healthy.

Continue reading “Look at all the Aerosols Pushed into the Atmosphere, from Fires, Volcanoes and Pollution. Even Sea Salt Thrown into the Air from Hurricanes”

That New Kind of Aurora Called “Steve”? Turns Out, it Isn’t an Aurora at All

Since time immemorial, people living in the Arctic Circle or the southern tip of Chile have looked up at the night sky and been dazzled by the sight of the auroras. Known as the Aurora Borealis in the north and Aurora Australis in the south (the “Northern Lights” and “Southern Lights”, respectively) these dazzling displays are the result of interactions in the ionosphere between charged solar particles and the Earth’s magnetic field.

However, in recent decades, amateur photographers began capturing photos of what appeared to be a new type of aurora – known as STEVE. In 2016, it was brought to the attention of scientists, who began trying to explain what accounted for the strange ribbons of purple and white light in the night sky. According to a new study, STEVE is not an aurora at all, but an entirely new celestial phenomenon.

The study recently appeared in the Geophysical Research Letters under the title “On the Origin of STEVE: Particle Precipitation or Ionospheric Skyglow?“. The study was conducted by a team of researchers from the Department of Physics and Astronomy from the University of Calgary, which was led by Beatriz Gallardo-Lacourt (a postdoctoral associate), and included Yukitoshi Nishimura – an assistant researcher of the Department of Atmospheric and Oceanic Sciences at the University of California.

STEVE, as imaged by Dave Markel in the skies above northern Canada. Copyright: davemarkelphoto

STEVE first became known to scientists thanks to the efforts of the Alberta Aurora Chasers (AAC), who occasionally noticed these bright, thin streams of white and purple light running from east to west in the night sky when photographing the aurora. Unlike auroras, which are visible whenever viewing conditions are right, STEVE was only visible a few times a year and could only be seen at high latitudes.

Initially, the photographers thought the light ribbons were the result of excited protons, but these fall outside the range of wavelengths that normal cameras can see and require special equipment to image. The AAC eventually named the light ribbons “Steve” – a reference to the 2006 film Over the Hedge. By 2016, Steve was brought to the attention of scientists, who turned the name into a backronym for Strong Thermal Emission Velocity Enhancement.

For their study, the research team analyzed a STEVE event that took place on March 28th, 2008, to see if it was produced in a similar fashion to an aurora. To this end, they considered previous research that was conducted using satellites and ground-based observatories, which included the first study on STEVE (published in March of 2018) conducted by a team of NASA-led scientists (of which Gallardo-Lacourt was a co-author).

This study indicated the presence of a stream of fast-moving ions and super-hot electrons passing through the ionosphere where STEVE was observed. While the research team suspected the two were connected, they could not conclusively state that the ions and electrons were responsible for producing it. Building on this, Gallardo-Lacourt and her colleagues analyzed the STEVE event that took place in March of 2008.

Rays of aurora borealis reach 60 miles and higher over the Pacific Northwest on Jan. 20, 2016 in this photo taken by astronauts Scott Kelly and Tim Peake from the International Space Station. Credit: NASA

They began by using images from ground-based cameras that record auroras over North America, which they then combined with data from the National Oceanic and Atmospheric Administration‘s (NOAA) Polar Orbiting Environmental Satellite 17 (POES-17). This satellite, which can measure the precipitation of charged particles into the ionosphere, was passing directly over the ground-based cameras during the STEVE event.

What they found was that the POES-17 satellite detected no charged particles raining down on the ionosphere during the event. This means that STEVE is not likely to be caused by the same mechanism as an aurora, and is therefore an entirely new type of optical phenomenon – which the team refer to as “skyglow”. As Gallardo-Lacourt explained in an AGU press release:

“Our main conclusion is that STEVE is not an aurora. So right now, we know very little about it. And that’s the cool thing, because this has been known by photographers for decades. But for the scientists, it’s completely unknown.”

Looking ahead, Galladro-Lacourt and her colleagues seek to test the conclusions of the NASA-led study. In short, they want to find out whether the streams of fast ions and hot electrons that were detected in the ionosphere are responsible for STEVE, or if the light is being produced higher up in the atmosphere. One thing is for certain though; for aurora chasers, evening sky-watching has become more interesting!

Further Reading: AGU

NASA Cubesat Takes a Picture of the Earth and Moon

In 1990, the Voyager 1 spaceprobe took a picture of Earth when it was about 6.4 billion km (4 billion mi) away. In this image, known as the “pale blue dot“, Earth and the Moon appeared as mere points of light because of the sheer distance involved. Nevertheless, it remains an iconic photo that not only showed our world from space, but also set  long-distance record.

As it turns out, NASA set another long-distance record for CubeSats last week (on May. 8th, 2018) when a pair of small satellites called Mars Cube One (MarCO) reached a distance of 1 million km (621,371 mi) from Earth. On the following day, one of the CubeSats (MarCO-B, aka. “Wall-E”) used its fisheye camera to take its own “pale blue dot” photo of the Earth-Moon system.

The two CubeSats were launched on May 5th along with the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) lander, which is currently on its way to Mars to explore the planet’s interior structure. As the first CubeSats to fly to deep pace, the purpose of the MarCO mission is to demonstrate if CubeSats are capable of acting as a relay with long-distance spacecraft.

An artist’s rendering of the twin Mars Cube One (MarCO) spacecraft as they fly through deep space. Credit: NASA/JPL-Caltech

To this end, the probes will be responsible for monitoring InSight as it makes its landing on Mars in late November, 2018. The photo of Earth and the Moon was taken as part of the process used by the engineering team to confirm that the spacecraft’s high-gain antenna unfolded properly. As Andy Klesh, MarCO’s chief engineer at NASA’s Jet Propulsion Laboratory, indicated in a recent NASA press release:

“Consider it our homage to Voyager. CubeSats have never gone this far into space before, so it’s a big milestone. Both our CubeSats are healthy and functioning properly. We’re looking forward to seeing them travel even farther.”

This technology demonstration, and the long-distance record recently set by MarCO satellites, provides a good indication of just how far CubeSats have come in the past few years. Originally, CubeSats were developed to teach university students about satellites, but have since become a major commercial technology. In addition to providing vast amounts of data, they have proven to be a cost-effective alternative to larger, multi-million dollar satellites.

The MarCO CubeSats will be there when the InSight lander accomplishes the most difficult part of its mission, which is entering Mars’ extremely thin atmosphere (which makes landings extremely challenging). As the lander travels to Mars, MarCO-A and B will travel along behind it and (should they make it all the way to Mars) radio back data about InSight as it enters the atmosphere and descends to the planet’s surface.

Artist’s interpretation of the InSight mission on the ground on Mars. Credit: NASA

The job of acting as a data relay will fall to NASA’s Mars Reconnaissance Orbiter (MRO), which has been in orbit of Mars since 2006. However, the MarCOs will also be monitoring InSight to see if future missions will be capable of bringing their own relay to Mars, rather than having to rely on an orbiter that is already there. They may also demonstrate a number of experimental technologies, which includes their radio and propulsion systems.

The main attraction though, are the high-gain antennas which will be providing information on InSights’ progress. At the moment, the team has received early confirmation that the antennas have successfully deployed, but they will continue to test them in the weeks ahead. If all goes according to plan, the MarCOs could demonstrate the ability of CubeSats to act not only as relays, but also their ability to gather information on other planets.

In other words, if the MarCOs are able to make it to Mars and track InSight’s progress, NASA and other agencies may contemplate mounting full-scale missions using CubeSats – sending them to the Moon, Mars, or even beyond. Later this month, the MarCOs will attempt their first trajectory correction maneuvers, which will be the first such maneuver are performed by CubeSats.

In the meantime, be sure to check out this video of the MarCO mission, courtesy of NASA 360:

Further Reading: NASA

Jupiter and Venus Change Earth’s Orbit Every 405,000 Years

JunoCam took this image during its eleventh close flyby of Jupiter on February 7, 2018. Image credit: NASA / JPL / SwRI / MSSS / David Marriott.

It is a well-known fact among Earth scientists that our planet periodically undergoes major changes in its climate. Over the course of the past 200 million years, our planet has experienced four major geological periods (the Triassic, Jurassic and Cretaceous and Cenozoic) and one major ice age (the Pliocene-Quaternary glaciation), all of which had a drastic impact on plant and animal life, as well as effecting the course of species evolution.

For decades, geologists have also understood that these changes are due in part to gradual shifts in the Earth’s orbit, which are caused by Venus and Jupiter, and repeat regularly every 405,000 years. But it was not until recently that a team of geologists and Earth scientists unearthed the first evidence of these changes – sediments and rock core samples that provide a geological record of how and when these changes took place.

The study which describes their findings, titled “Empirical evidence for stability of the 405-kiloyear Jupiter–Venus eccentricity cycle over hundreds of millions of years”, recently appeared in the Proceedings of the National Academy of Sciences of the USA. The study was led by Dennis V. Bent, a, a Board of Governors professor from Rutgers University–New Brunswick, and included members from the Lamont–Doherty Earth Observatory, the Berkeley Geochronology Center, the Petrified Forest National Park in Arizona, and multiple universities.

Professor Dennis Kent with part of a 1,700-foot-long rock core obtained from Petrified Forest National Park in Arizona. Credit: Nick Romanenko/Rutgers University

As noted, the idea that Earth experiences periodic changes in its climate (which are related to changes in its orbit) has been understood for almost a century. These changes consist of Milankovitch Cycles, which consist of a 100,000-year cycle in the eccentricity of Earth’s orbit, a 41,000-year cycle in the tilt of Earth’s axis relative to its orbital plane,  and a 21,000-year cycle caused by changes in the planet’s axis.

Combined with the 405,000-year swing, which is the result of Venus and Jupiter’s gravitational influence, these shifts cause changes in how much solar energy reaches parts of our planet, which in turn influences Earth’s climate. Based on fossil records, these cycles are also known to have had a profound impact on life on Earth, which likely had an effect on the course of species of evolution. As Prof. Bent explained in a Rutgers Today press release:

“The climate cycles are directly related to how Earth orbits the sun and slight variations in sunlight reaching Earth lead to climate and ecological changes. The Earth’s orbit changes from close to perfectly circular to about 5 percent elongated especially every 405,000 years.”

For the sake of their study, Prof. Kent and his colleagues obtained sediment samples from the Newark basin, a prehistoric lake that spanned most of New Jersey, and a core rock sample from the Chinle Formation in Petrified Forest National Park in Arizona. This core rock measured about 518 meters (1700 feet) long, 6.35 cm (2.5 inches) in diameter, and was dated to the Triassic Period – ca. 202 to 253 million years ago.

Within ancient rocks in Arizona’s Petrified Forest National Park, scientists have identified signs of a regular variation in Earth’s orbit that influences climate. Credit: Kevin Krajick/Lamont-Doherty Earth Observatory

The team then linked reversals in Earth’s magnetic field – where the north and south pole shift – to sediments with and without zircons (minerals with uranium that allow for radioactive dating) as well as to climate cycles in the geological record. What these showed was that the 405,000-years cycle is the most regular astronomical pattern linked to Earth’s annual orbit around the Sun.

The results further indicated that the cycle been stable for hundreds of millions of years and is still active today. As Prof. Kent explained, this constitutes the first verifiable evidence that celestial mechanics have played a historic role in natural shifts in Earth’s climate. As Prof. Kent indicated:

“It’s an astonishing result because this long cycle, which had been predicted from planetary motions through about 50 million years ago, has been confirmed through at least 215 million years ago. Scientists can now link changes in the climate, environment, dinosaurs, mammals and fossils around the world to this 405,000-year cycle in a very precise way.”

Previously, astronomers were able to calculate this cycle reliably back to around 50 million years, but found that the problem became too complex prior to this because too many shifting motions came into play. “There are other, shorter, orbital cycles, but when you look into the past, it’s very difficult to know which one you’re dealing with at any one time, because they change over time,” said Prof. Kent. “The beauty of this one is that it stands alone. It doesn’t change. All the other ones move over it.”

The super-continent Pangaea during the Permian period (300 – 250 million years ago). Credit: NAU Geology/Ron Blakey

In addition, scientists were unable to obtain accurate dates as to when Earth’s magnetic field reversed for 30 million years of the Late Triassic – between ca. 201.3 and 237 million years ago. This was a crucial period for the evolution of terrestrial life because it was when the Supercontinent of Pangaea broke up, and also when the dinosaurs and mammals first appeared.

This break-up led to the formation of the Atlantic Ocean as the continents drifted apart and coincided with a mass extinction event by the end of the period that effected the dinosaurs. With this new evidence, geologists, paleontologists and Earth scientists will be able to develop very precise timelines and accurately categorize fossil evidence dated to this period, which show differences and similarities over wide-ranging areas.

This research, and the ability to create accurate geological and climatological timelines that go back over 200 million years, is sure to have drastic implications. Not only will climate studies benefit from it, but also our understanding of how life, and even how our Solar System, evolved. What emerges from this could include a better understanding of how life could emerge in other star systems.
After all, if our search for extra-solar life life comes down to what we know about life on Earth, knowing more about how it evolved here will better the odds of finding it out there.

Did You Know the Earth Has a Second Magnetic Field? Its Oceans

Earth’s magnetic field is one of the most mysterious features of our planet. It is also essential to life as we know it, ensuring that our atmosphere is not stripped away by solar wind and shielding life on Earth from harmful radiation. For some time, scientists have theorized that it is the result of a dynamo action in our core, where the liquid outer core revolves around the solid inner core and in the opposite direction of the Earth’s rotation.

In addition, Earth’s magnetic field is affected by other factors, such as magnetized rocks in the crust and the flow of the ocean. For this reason, the European Space Agency’s (ESA) Swarm satellites, which have been continually monitoring Earth’s magnetic field since its deployment, recently began monitoring Earth’s oceans – the first results of which were presented at this year’s European Geosciences Union meeting in Vienna, Austria.

The Swarm mission, which consists of three Earth-observation satellites, was launched in 2013 for the sake of providing high-precision and high-resolution measurements of Earth’s magnetic field. The purpose of this mission is not only to determine how Earth’s magnetic field is generated and changing, but also to allow us to learn more about Earth’s composition and interior processes.

Artist’s impression of the ESA’s Swarm satellites, which are designed to measure the magnetic signals from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere. Credit: ESA/AOES Medialab

Beyond this, another aim of the mission is to increase our knowledge of atmospheric processes and ocean circulation patterns that affect climate and weather. The ocean is also an important subject of study to the Swarm mission because of the small ways in which it contributes to Earth’s magnetic field. Basically, as the ocean’s salty water flows through Earth’s magnetic field, it generates an electric current that induces a magnetic signal.

Because this field is so small, it is extremely difficult to measure. However, the Swarm mission has managed to do just that in remarkable detail. These results, which were presented at the EGU 2018 meeting, were turned into an animation (shown below), which shows how the tidal magnetic signal changes over a 24 hour period.

As you can see, the animation shows temperature changes in the Earth’s oceans over the course of the day, shifting from north to south and ranging from deeper depths to shallower, coastal regions. These changes have a minute effect on Earth’s magnetic field, ranging from 2.5 to -2.5 microtesla. As Nils Olsen, from the Technical University of Denmark, explained in a ESA press release:

“We have used Swarm to measure the magnetic signals of tides from the ocean surface to the seabed, which gives us a truly global picture of how the ocean flows at all depths – and this is new. Since oceans absorb heat from the air, tracking how this heat is being distributed and stored, particularly at depth, is important for understanding our changing climate. In addition, because this tidal magnetic signal also induces a weak magnetic response deep under the seabed, these results will be used to learn more about the electrical properties of Earth’s lithosphere and upper mantle.”

By learning more about Earth’s magnetic field, scientists will able to learn more about Earth’s internal processes, which are essential to life as we know it. This, in turn, will allow us to learn more about the kinds of geological processes that have shaped other planets, as well as determining what other planets could be capable of supporting life.

Be sure to check out this comic that explains how the Swarm mission works, courtesy of the ESA.

Further Reading: ESA

The Aurora Station Will be the First Luxury Hotel in Space

Are you ready for a luxury hotel in space? We all knew it was coming, even though it seems impossibly futuristic. But this time it’s not just science fiction; somebody actually has a plan.

The space hotel will be called “Aurora Station” and the company behind it is Orion Span, a Silicon Valley and Houston-based firm. Orion Span aims to deliver the astronaut experience to people, by delivering the people into space. The catch?

“We developed Aurora Station to provide a turnkey destination in space. Upon launch, Aurora Station goes into service immediately, bringing travelers into space quicker and at a lower price point than ever seen before, while still providing an unforgettable experience” – Frank Bunger, CEO and founder of Orion Span.

First of all, a 12 day stay aboard Aurora Station for two people will cost $19 million US, or $9.5 million per person. Even so, you can’t just buy a ticket and hop on board. Guests must also sign up for three months of Orion Span Astronaut Certification (OSAC). Then they’ll be trained at a facility in Houston, Texas.

So once their cheque has cleared, and once they’re trained, what awaits guests on Aurora Station?

Aurora Station will orbit Earth at 320 km (200 m) and will make the trip around Earth every 90 minutes. If you do the math, that’s 16 sunrises and sunsets each day, and guests will enjoy this slideshow for 12 days. Other than this compressed schedule of 96 sunsets and 96 sunrises during their 12 day stay, guests will also be treated to stunning views of the Earth rolling by underneath them, thanks to the unprecedented number of windows Aurora Station will have.

Aurora Station will have 5600 square feet of living space which can be configured as 2 or 4 suites. Image: Orion Span

Aurora Station is the brain-child of Orion Span’s CEO, Frank Bunger. “We developed Aurora Station to provide a turnkey destination in space. Upon launch, Aurora Station goes into service immediately, bringing travelers into space quicker and at a lower price point than ever seen before, while still providing an unforgettable experience,” said Bunger.

Guests won’t be alone on the station, of course. The space hotel will have room for 6 people in total, meaning 4 guests and 2 crew. (You didn’t think you’d be alone up there, did you?) Each pair of guests will still have some alone time though, in what Orion Span calls luxurious private suites for two.

There’s no doubt that staying on a space hotel for 12 days will be the experience of a lifetime, but still, 12 days is a long time. The space station itself will be 5600 square feet, with two suites that can be configured to four. Each suite will be about the size of a small bedroom. Once you’ve gotten used to seeing Earth below you, and you’re used to your suite, what will you do?

Well, there’ll be Wi-Fi of course. So if you’re the type of person who gets bored of orbiting the only planet that we know of that hosts life, and the only planet on which every human civilization has lived and died on, you can always surf the web or watch videos. Aurora Station will also have a virtual-reality holodeck, the cherry-on-top for this science-fiction-come-to- life space resort.

But apparently, boredom won’t be a problem. In an interview with the Globe and Mail, Orion Span CEO Frank Bunger said, ““We talked to previous space tourists, they said 10 days aboard the space station was not enough.” Maybe the extra 2 days in space that Aurora Station guests will enjoy will be just the right amount.

As far as getting guests to the station, that will be up to other private space companies like SpaceX. SpaceX has plans to send tourists on trips around the Moon, and they have experience docking with the International Space Station, so they should be able to transport guests to and from a space hotel.

Aurora Station will also host micro-gravity research and in-situ manufacturing. Image: Orion Span

It doesn’t seem like there’s any shortage of customers. Aurora Station was introduced on April 5th 2018, and the first four months of reservations sold out within 72 hours, with each guest paying a deposit of $80,000 US.

There’s another side to Aurora Station, though. Other than just a nice get-away for people who can afford it, there’s a research aspect to it. Orion Span will offer Aurora Station as a platform for micro-gravity research on a pay-as-you-go basis. It will also lease capacity for in-situ manufacturing and 3D printing research.

But Aurora Station would hardly be in the news if it was only a research endeavour. What’s got people excited is the ability to visit space. And maybe to own some real estate there.

Orion Span is designing Aurora Station to be expandable. They can attach more stations to the original without disrupting anything. And this leads us to Orion Span’s next goal: space condos.

As it says on Orion Span’s website, “Like a city rising from the ground, this unique architecture enables us to build up Aurora Station in orbit dynamically – on the fly – and with no impact to the remainder of Aurora Station. As we add capacity, we will design in condos available for purchase.”

I think we all knew this would happen eventually. If you have the money, you can visit space, and even own a condo there.

No word yet on what that will cost.

About 2.3 Billion Years Ago, a Firehose of Oxygen was Released Into the Atmosphere

Billions of years ago, Earth’s environment was very different from the one we know today. Basically, our planet’s primordial atmosphere was toxic to life as we know it, consisting of carbon dioxide, nitrogen and other gases. However, by the Paleoproterozoic Era (2.5–1.6 billion years ago), a dramatic change occurred where oxygen began to be introduced to the atmosphere – known as the Great Oxidation Event (GOE).

Until recently, scientists were not sure if this event – which was the result of photosynthetic bacteria altering the atmosphere – occurred rapidly or not. However, according to a recent study by a team of international scientists, this event was much more rapid than previously thought. Based on newly-discovered geological evidence, the team concluded that the introduction of oxygen to our atmosphere was “more like a fire hose” than a trickle.

The study, titled “Two-billion-year-old evaporites capture Earth’s great oxidation“, recently appeared in the journal Science. Led by Clara Blättler, a postdoctoral research fellow in the Department of Geosciences at Princeton, the team also included members from the Blue Marble Space Institute of Science, the Karelian Science Center, the British Geological Survey, the Geological Survey of Norway, and multiple universities.

Roughly 2.5 billion years ago, towards the end of the Archaean Era, oxidation of our atmosphere began. Credit:

In short, the Great Oxygenation Event took began roughly 2.45 billion years ago at the beginning of the Proterozoic eon. This process is believed to have been the result of cyanobacteria slowly metabolizing the carbon dioxide (CO2) and producing oxygen gas, which now makes up about 20% of our atmosphere. However, until recently, scientists were unable to place much in the way of constraints on this period.

Luckily, a team of geologists from the Geological Survey of Norway – in collaboration with the Karelian Research Center in Petrozavodsk, Russia – recently recovered samples of preserved crystallized salts in Russia that are dated to this period. They were extracted from a 1.9 km-deep (1.2 mi) hole in Karelia in northwest Russia, from the the Onega Parametric Hole (OPH) drilling site on the western shores of Lake Onega.

These salt crystals, which are roughly 2 billion years ago, were the result of ancient seawater evaporating. Using these samples, Blättler and her team were able to learn things about the composition of the oceans and the atmosphere that existed on Earth around the time of the GOE. For starters, the team determined that they contained a surprisingly large amount of sulfate, which is the result of seawater reacting with oxygen.

As Aivo Lepland – a researcher at the Geological Survey of Norway, a geology specialist at Tallinn University of Technology, and senior author on the study – explained in recent Princeton press release:

“This is the strongest ever evidence that the ancient seawater from which those minerals precipitated had high sulfate concentrations reaching at least 30 percent of present-day oceanic sulfate as our estimations indicate. This is much higher than previously thought and will require considerable rethinking of the magnitude of oxygenation of Earth’s 2-billion year old atmosphere-ocean system.”

New evidence indicates that The Great Oxygenation Event (GOE) may have been much more rapid than previously thought. Credit: MIT

Prior to this, scientists were unsure how long it took for our atmosphere to reach its current balance of nitrogen and oxygen, which is essential for life as we know it. Basically, opinion was divided between it being something that happened rapidly, or occurred over the course of millions of years. Much of this stems from the fact that the oldest rock salts discovered were dated to a billion years ago.

“It has been hard to test these ideas because we didn’t have evidence from that era to tell us about the composition of the atmosphere,” said Blättler. However, by discovering rock salts that are roughly 2 billion years old, scientists now have the evidence they need to place constraint on the GOE. The find was also very fortunate, given that such rock salts samples are rather fragile.

The samples used for this study contained halite (which is chemically identical to table salt or sodium chloride) as well as other salts of calcium, magnesium and potassium – which dissolve easily over time. However, the sample obtained in this case was exceptionally-well preserved deep within the Earth. As such, they are able to provide scientists with invaluable clues as to what happened around the time of the GOE.

Looking ahead, this latest study is likely to lead to new models that explain what occurred after the GOE to cause oxygen gas to accumulate in our atmosphere. As John Higgins, an assistant professor of geosciences at Princeton who provided interpretation of the geochemical analysis, explained:

“This is a pretty special class of geologic deposits. There has been a lot of debate as to whether the Great Oxidation Event, which is tied to increase and decrease in various chemical signals, represents a big change in oxygen production, or just a threshold that was crossed. The bottom line is that this paper provides evidence that the oxygenation of the Earth across this time period involved a lot of oxygen production… There may have been important changes in feedback cycles on land or in the oceans, or a large increase in oxygen production by microbes, but either way it was much more dramatic than we had an understanding of before.”

These models are also likely to help in the hunt for life beyond our Solar System. By understanding what took place on our own planet billions of years ago to make it suitable for life, we will be able to spot these same conditions and processes on other planets.

Further Reading: Princeton University, Science

Bacteria Surviving On Musk’s Tesla Are Either A Bio-threat Or A Backup Copy Of Life On Earth

A great celebratory eruption accompanied the successful launch of SpaceX’s Falcon Heavy rocket in early February. That launch was a big moment for people who are thoughtful about the long arc of humanity’s future. But the Tesla Roadster that was sent on a long voyage in space aboard that rocket is likely carrying some bacterial hitch-hikers.

The Falcon Heavy’s first flight. Image: SpaceX

A report from Purdue University suggests that, though unlikely, the Roadster may be carrying an unwelcome cargo of Earthly bacteria to any destination it reaches. But we’re talking science here, and science doesn’t necessarily shy away from the unlikely.

“The load of bacteria on the Tesla could be considered a biothreat, or a backup copy of life on Earth.” – Alina Alexeenko, Professor of Aeronautics and Astronautics at Purdue University.

NASA takes spacecraft microbial contamination very seriously. The Office of Planetary Protection monitors and enforces spacecraft sterilization. Spreading Terran bacteria to other worlds is a no-no, for obvious reasons, so spacecraft are routinely sterilized to prevent any bacterial hitch-hikers. NASA uses the term “biological burden” to quantify how rigorously a spacecraft needs to be sterilized. Depending on a spacecraft’s mission and destination, the craft is subjected to increasingly stringent sterilization procedures.

If a craft is not likely to ever contact another body, then sterilization isn’t as strict. If the target is a place like Mars, where the presence of Martian life is undetermined, then the craft is prepared differently. When required, spacecraft and spacecraft components are treated in clean rooms like the one at Goddard Space Flight Center.

The clean room at Goddard Space Flight Center where spacecraft are sterilized. Image: NASA

The clean rooms are strictly controlled environments, where staff wear protective suits, boots, hoodies, and surgical gloves. The air is filtered and the spacecraft are exposed to various types of sterilization. After sterilization, the spacecraft is handled carefully before launch to ensure it remains sterile. But the Tesla Roadster never visited such a place, since it’s destination is not another body.

The Tesla Roadster in space was certainly manufactured in a clean place, but there’s a big difference between clean and sterile. To use NASA’s terminology, the bacterial load of the Roadster is probably very high. But would those bacteria survive?

The atmosphere in space is most definitely hostile to life. The temperature extremes, the low pressure, and the radiation are all hazardous. But, some bacteria could survive by going dormant, and there are nooks and crannies in the Tesla where life could cling.

This images shows the Orion capsule wrapped in plastic after sterilization, and being moved to a workstand. These types of precautions are mandated by NASA’s Office of Planetary Protection. Image: NASA.

The Tesla is not predicted to come into contact with any other body, and certainly not Mars, which is definitely a destination in our Solar System that we want to protect from contamination. In fact, a more likely eventual destination for the Roadster is Earth, albeit millions of years from now. And in that case, according to Alina Alexeenko, a Professor of Aeronautics and Astronautics at Purdue University, any bacteria on the red Roadster is more like a back-up for life on Earth, in case we do something stupid before the car returns. “The load of bacteria on the Tesla could be considered a biothreat, or a backup copy of life on Earth,” she said.

But even if some bacteria survived for a while in some hidden recess somewhere on the Tesla Roadster, could it realistically survive for millions of years in space?

As far as NASA is concerned, length of time in space is one component of sterilization. Some missions are designed with the craft placed in a long-term orbit at the end of its mission, so that the space environment can eventually destroy any lingering bacterial life secreted away somewhere. Surely, if the Roadster does ever collide with Earth, and if it takes millions of years for that to happen, and if it’s not destroyed on re-entry, the car would be sterilized by its long-duration journey?

That seems to be the far more likely outcome. You never know for sure, but the space-faring Roadster is probably not a hazardous bio-threat, nor a back-up for life on Earth; those are pretty fanciful ideas.

Musk’s pretty red car is likely just a harmless, attention-grabbing bauble.