Although dark matter is inherently difficult to observe, an understanding of its properties (even if not its nature) allows astronomers to predict where its effects should be felt. The current understanding is that dark matter helped form the first galaxies by providing gravitational scaffolding in the early universe. These galaxies were small and collapsed to form the larger galaxies we see today. As galaxies grew large enough to shred incoming satellites and their dark matter, much of the dark matter should have been deposited in a flat structure in spiral galaxies which would allow such galaxies to form dark components similar to the disk and halo. However, a new study aimed at detecting the Milky Way’s dark disk have come up empty.
The study concentrated on detecting the dark matter by studying the luminous matter embedded in it in much the same way dark matter was originally discovered. By studying the kinematics of the matter, it would allow astronomers to determine the overall mass present that would dictate the movement. That observed mass could then be compared to the amount of mass predicted of both baryonic matter as well as the dark matter component.
The team, led by C. Moni Bidin used ~300 red giant stars in the Milky Way’s thick disk to map the mass distribution of the region. To eliminate any contamination from the thin disc component, the team limited their selections to stars over 2 kiloparsecs from the galactic midplane and velocities characteristic of such stars to avoid contamination from halo stars. Once stars were selected, the team analyzed the overall velocity of the stars as a function of distance from the galactic center which would give an understanding of the mass interior to their orbits.
Using estimations on the mass from the visible stars and the interstellar medium, the team compared this visible mass to the solution for mass from the observations of the kinematics to search for a discrepancy indicative of dark matter. When the comparison was made, the team discovered that, “[t]he agreement between the visible mass and our dynamical solution is striking, and there is no need to invoke any dark component.”
While this finding doesn’t rule out the presence of dark matter, it does place constraints on it distribution and, if confirmed in other galaxies, may challenge the understanding of how dark matter serves to form galaxies. If dark matter is still present, this study has demonstrated that it is more diffuse than previously recognized or perhaps the disc component is flatter than previously expected and limited to the thin disc. Further observations and modeling will undoubtedly be necessary.
Yet while the research may show a lack of our understanding of dark matter, the team also notes that it is even more devastating for dark matter’s largest rival. While dark matter may yet hide within the error bars in this study, the findings directly contradict the predictions of Modified Newtonian Dynamics (MOND). This hypothesis predicts the apparent gain of mass due to a scaling effect on gravity itself and would have required that the supposed mass at the scales observed be 60% higher than indicated by this study. Continue reading “Missing Milky Way Dark Matter”
One of the predictions of Einstein’s predictions from general relativity was that gravity could distort space itself and potentially, act as a lens. This was spectacularly confirmed in 1919 when, during a solar eclipse, Arthur Eddington observed stars near the Sun were distorted from their predicted positions. In 1979, this effect was discovered at much further distances when astronomers found it to distort the image of a distant quasar, making one appear as two. Several other such cases have been discovered since then, but these instances of gravitational lensing have proven difficult to find. Searches for them have had a low success rate in which less than 10% of candidates are confirmed as gravitational lenses. But a new method using data from Herschel may help astronomers discover many more of these rare occurrences.
The Herschel telescope is one of the many space telescopes currently in use and explores the portion of the spectrum from the far infrared to the submillimeter regime. A portion of its mission is to produce a large survey of the sky resulting in the Herschel ATLAS project which will take deep images of over 550 square degrees of the sky.
While Herschel explores this portion of the electromagnetic spectrum in far greater detail than its predecessors, in many ways, there’s not much to see. Stars emit only very faintly in this range. The most promising targets are warm gas and dust which are better emitters, but also far more diffuse. But it’s this combination of facts that will allow Herschel to potentially discover new lenses with improved efficiency.
The reason is that, although galaxies lack strong emission in this regime in the modern universe, ancient galaxies gave off far more since during the first 4 billion years. During that time, many galaxies were dominated by dust being warmed by star formation. Yet due to their distance, they too should be faint… Unless a gravitational lens gets in the way. Thus, the majority of small, point-like sources in the ALTAS collection are likely to be lensed galaxies. As Dr Mattia Negrello, of the Open University and lead researcher of the study explains, “The big breakthrough is that we have discovered that many of the brightest sources are being magnified by lenses, which means that we no longer have to rely on the rather inefficient methods of finding lenses which are used at visible and radio wavelengths.”
These panels show a zoom of one of the lenses, with high resolution images from Keck (optical light, blue) and the submillimeter Array (sub-millimetre light, red). Image credits: ESA/NASA/JPL-Caltech/Keck/SMA
Already, this new technique has turned up at least five strong candidates. A paper, to be published in the current issue of Science discusses them. Each of them received followup observations from the Z-Spec spectrometer on the California Institute of Technology Submillimeter Observatory. The furthest of these these objects, labeled as ID81, showed a prominent IR spectral line had a redshift of 3.04, putting it at a distance of 11.5 billion lightyears. Additionally, each system showed the spectral profile of the foreground galaxy, demonstrating that the combined light received was indeed two galaxies and the bright component was a gravitational lens.
This method of using gravitational lenses will allow the Herschel team to probe distant galaxies in detail never before achieved. As with all telescopes, longer wavelengths of observations result in less resolution which means that, even if one of the distant systems were to be broken into distinct portions, Herschel would be unable to resolve them. But the fact that we can see them at all means their spectral signatures of the galaxies as a whole can still be studied. Additionally, as Professor Steve Eales from Cardiff University and the other leader of the survey noted: “We can also use this technique to study the lenses themselves.” This potential to explore the mass of the nearby galaxies may help astronomers to understand and constrain the enigmatic Dark Matter that makes up ~80% of the mass in our universe.
Dr Loretta Dunne of Nottingham University and joint-leader of the Herschel-ATLAS survey adds, “What we’ve seen so far is just the tip of the iceberg. Wide area surveys are essential for finding these rare events and since Herschel has only covered one thirtieth of the entire Herschel-ATLAS area so far, we expect to discover hundreds of lenses once we have all the data. Once found, we can probe the early Universe on the same physical scales as we can in galaxies next door.”
The Principal Investigator (P.I.) for the Alpha Magnetic Spectrometer-2 (AMS-02) experiment, Professor Samuel Ting, says that the experiment is already accruing data as it awaits its February 2011 launch date. Scheduled to fly aboard the final flight of the space shuttle Endeavour, STS-134, AMS-02 will search through cosmic rays for exotic particles, antimatter and dark matter. The experiment will be mounted to the outside of the International Space Station (ISS) and will require no spacewalks to attach. Continue reading “ISS Particle Detector Ready to Unveil Wonders of the Universe”
Early on in astronomical history, galactic rotation curves were expected to be simple; they should operate much like the solar system in which inner objects orbit faster and outer objects slower. To the surprise of many astronomers, when rotation curves were eventually worked out, they appeared mostly flat. The conclusion was that the mass we see was only a small fraction of the total mass and that a mysterious Dark Matter must be holding the galaxies together, forcing them to rotate more like a solid body.
Recent observations of the Andromeda Galaxy’s (M31) rotation curve has shown that there may yet be more to learn. In the outermost edges of the galaxy, the rotation rate has been shown to increase. And M31 isn’t alone. According to Noordermeer et al. (2007) “in some cases, such as UGC 2953, UGC 3993 or UGC 11670 there are indications that the rotation curves start to rise again at the outer edges of the HI discs.” A new paper by a team of Spanish astronomers attempts to explain this oddity.
Although many spiral galaxies have been discovered with the odd rising rotational velocities near their outer edges, Andromeda is both one of the most prominent and the closest. Detailed studies from Corbelli et al. (2010) and Chemin et al. (2009), mapped out the rise in HI gas, showing that the velocity increases some 50 km/s in the outer 7 kiloparsecs mapped. This makes up a significant fraction of the total radius given the studies extended to only ~38 kiloparsecs. While conventional models with Dark Matter are able to reproduce the rotational velocities of the inner portions of the galaxy, they have not explained this outer feature and instead predict that it should slowly fall off.
The new study, led by B. Ruiz-Granados and J.A. Rubino-Martin from the Instituto de Astrofisica de Canarias, attempts to explain this oddity using a force with which astronomers are very familiar: Magnetic fields. This force has been shown to decrease less rapidly than others over galactic distances and in particular, studies of M31’s magnetic field shows that it slowly changes angle with distance from the center of the galaxy. This slowly changing angle works in such a manner as to decrease the angle between the field and the direction of motion of particles within it. As a result, “the field becomes more tightly wound with increasing galactocentric distance” making the decrease in strength even slower.
Although galactic magnetic fields are weak by most standards, the sheer amount of matter they can affect and the charged nature of many gas clouds means that even weak fields may play an important role. M31’s magnetic field has been estimated to be ~4.6 microGauss. When a magnetic field with this value is added into the modeling equations, the team found that it greatly improved the fit of models to the observed rotation curve, matching the increase in rotational velocity.
The team notes that this finding is still speculative as the understanding of the magnetic fields at such distances is based solely on modeling. Although the magnetic field has been explored for the inner portions of the galaxy (roughly the inner 15 kiloparsecs), no direct measurement has yet been made in the regions in question. However, this model makes strict observational predictions which could be confirmed by future missions LOFAR and SKA.
One of the most anticipated science instruments for the International Space Station — which could find the “hidden universe” of anti matter and dark matter — has arrived at Kennedy Space Center. The Alpha Magnetic Spectrometer (AMS-02) is now ready to head to space as part of what is currently the last scheduled space shuttle mission in February 2011. Dubbed “The Antimatter Hunter,” the AMS is the largest scientific instrument to be installed on the ISS, and comes as a result of the largest international collaboration for a single experiment in space.
“Even before its launch, the AMS-02 has already been hailed is already as a success. Today we can see in it with more than a decade of work and cooperation between 56 institutes from 16 different countries,” said Simonetta Di Pippo, ESA Director of Human Spaceflight.
AMS measures the “fingerprints” of astrophysical objects in high-energy particles, and will study the sources of cosmic rays — from ordinary things like stars and supernovae, as well as perhaps more exotic sources like quark stars, dark-matter annihilations, and galaxies made entirely of antimatter.
Each astrophysical source emits a particular type of cosmic rays; the rays migrate through space in all directions, and AMS-02 will detect the ones that pass near Earth. With careful theoretical modeling, the scientists hope to measure those fingerprints.
By observing the hidden parts of the Universe, AMS will help scientists to better understand better the fundamental issues on the origin and structure of the Universe. With a magnetic field 4,000 times stronger than the magnetic field of the Earth, this state-of-the-art particle physics detector will examine directly from space each particle passing through it in a program that is complementary to that of the Large Hadron Collider. So, not only are astronomers eagerly waiting for data, but particle physicists as well.
The AMS-02 experiment is led by Nobel Prize Laureate Samuel Ting of the Massachusetts Institute of Technology (MIT). The experiment is expected to remain active for the entire lifetime of the ISS and will not return back to Earth. The launch of the instrument was delayed so that the original superconducting magnet could be replace with a permanent one with a longer life expectancy.
Now as KSC, the AMS will be installed in a clean room for more tests. In a few weeks, the detector will be moved to the Space Shuttle, ready for its last mission.
The AMS-02 is an experiment that we hope we’ll be doing lots of reporting about in the future!
Need more evidence that the expansion of the Universe is accelerating? Just look to the Hubble Space Telescope. An international team of astronomers has indeed confirmed that the expansion of the universe is accelerating. The team, led by Tim Schrabback of the Leiden Observatory, conducted an intensive study of over 446,000 galaxies within the COSMOS (Cosmological Evolution Survey) field, the result of the largest survey ever conducted with Hubble. In making the COSMOS survey, Hubble photographed 575 slightly overlapping views of the same part of the Universe using the Advanced Camera for Surveys (ACS) onboard the orbiting telescope. It took nearly 1,000 hours of observations.
In addition to the Hubble data, researchers used redshift data from ground-based telescopes to assign distances to 194,000 of the galaxies surveyed (out to a redshift of 5). “The sheer number of galaxies included in this type of analysis is unprecedented, but more important is the wealth of information we could obtain about the invisible structures in the Universe from this exceptional dataset,” said co-author Patrick Simon from Edinburgh University.
In particular, the astronomers could “weigh” the large-scale matter distribution in space over large distances. To do this, they made use of the fact that this information is encoded in the distorted shapes of distant galaxies, a phenomenon referred to as weak gravitational lensing. Using complex algorithms, the team led by Schrabback has improved the standard method and obtained galaxy shape measurements to an unprecedented precision. The results of the study will be published in an upcoming issue of Astronomy and Astrophysics.
The meticulousness and scale of this study enables an independent confirmation that the expansion of the Universe is accelerated by an additional, mysterious component named dark energy. A handful of other such independent confirmations exist. Scientists need to know how the formation of clumps of matter evolved in the history of the Universe to determine how the gravitational force, which holds matter together, and dark energy, which pulls it apart by accelerating the expansion of the Universe, have affected them. “Dark energy affects our measurements for two reasons. First, when it is present, galaxy clusters grow more slowly, and secondly, it changes the way the Universe expands, leading to more distant — and more efficiently lensed — galaxies. Our analysis is sensitive to both effects,” says co-author Benjamin Joachimi from the University of Bonn. “Our study also provides an additional confirmation for Einstein’s theory of general relativity, which predicts how the lensing signal depends on redshift,” adds co-investigator Martin Kilbinger from the Institut d’Astrophysique de Paris and the Excellence Cluster Universe.
The large number of galaxies included in this study, along with information on their redshifts is leading to a clearer map of how, exactly, part of the Universe is laid out; it helps us see its galactic inhabitants and how they are distributed. “With more accurate information about the distances to the galaxies, we can measure the distribution of the matter between them and us more accurately,” notes co-investigator Jan Hartlap from the University of Bonn. “Before, most of the studies were done in 2D, like taking a chest X-ray. Our study is more like a 3D reconstruction of the skeleton from a CT scan. On top of that, we are able to watch the skeleton of dark matter mature from the Universe’s youth to the present,” comments William High from Harvard University, another co-author.
The astronomers specifically chose the COSMOS survey because it is thought to be a representative sample of the Universe. With thorough studies such as the one led by Schrabback, astronomers will one day be able to apply their technique to wider areas of the sky, forming a clearer picture of what is truly out there.
Paper: Schrabback et al., ‘Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS’, Astronomy and Astrophysics, March 2010,
There’s the common notion that black holes suck in everything in the nearby vicinity by exerting a strong gravitational influence on the matter, energy, and space surrounding them. But astronomers have found that the dark matter around black holes might be a different story. Somehow dark matter resists ‘assimilation’ into a black hole.
About 23% of the Universe is made up of mysterious dark matter, invisible material only detected through its gravitational influence on its surroundings. In the early Universe clumps of dark matter are thought to have attracted gas, which then coalesced into stars that eventually assembled the galaxies we see today. In their efforts to understand galaxy formation and evolution, astronomers have spent a good deal of time attempting to simulate the build up of dark matter in these objects.
Dr. Xavier Hernandez and Dr. William Lee from the National Autonomous University of Mexico (UNAM) calculated the way in which the black holes found at the center of galaxies absorb dark matter. These black holes have anything between millions and billions of times the mass of the Sun and draw in material at a high rate.
The researchers modeled the way in which the dark matter is absorbed by black holes and found that the rate at which this happens is very sensitive to the amount of dark matter found in the black holes’ vicinity. If this concentration were larger than a critical density of 7 Suns of matter spread over each cubic light year of space, the black hole mass would increase so rapidly, hence engulfing such large amounts of dark matter, that soon the entire galaxy would be altered beyond recognition.
“Over the billions of years since galaxies formed, such runaway absorption of dark matter in black holes would have altered the population of galaxies away from what we actually observe,” said Hernandez
Their work therefore suggests that the density of dark matter in the centers of galaxies tends to be a constant value. By comparing their observations to what current models of the evolution of the Universe predict, Hernandez and Lee conclude that it is probably necessary to change some of the assumptions that underpin these models – dark matter may not behave in the way scientists thought it did.
There work appears in the journal Monthly Notices of the Royal Astronomical Society.
[/caption]
Published in 1915, Einstein’s theory of general relativity (GR) passed its first big test just a few years later, when the predicted gravitational deflection of light passing near the Sun was observed during the 1919 solar eclipse.
In 1960, GR passed its first big test in a lab, here on Earth; the Pound-Rebka experiment. And over the nine decades since its publication, GR has passed test after test after test, always with flying colors (check out this review for an excellent summary).
But the tests have always been within the solar system, or otherwise indirect.
Now a team led by Princeton University scientists has tested GR to see if it holds true at cosmic scales. And, after two years of analyzing astronomical data, the scientists have concluded that Einstein’s theory works as well in vast distances as in more local regions of space.
The scientists’ analysis of more than 70,000 galaxies demonstrates that the universe – at least up to a distance of 3.5 billion light years from Earth – plays by the rules set out by Einstein in his famous theory. While GR has been accepted by the scientific community for over nine decades, until now no one had tested the theory so thoroughly and robustly at distances and scales that go way beyond the solar system.
Reinabelle Reyes, a Princeton graduate student in the Department of Astrophysical Sciences, along with co-authors Rachel Mandelbaum, an associate research scholar, and James Gunn, the Eugene Higgins Professor of Astronomy, outlined their assessment in the March 11 edition of Nature.
Other scientists collaborating on the paper include Tobias Baldauf, Lucas Lombriser and Robert Smith of the University of Zurich and Uros Seljak of the University of California-Berkeley.
The results are important, they said, because they shore up current theories explaining the shape and direction of the universe, including ideas about dark energy, and dispel some hints from other recent experiments that general relativity may be wrong.
“All of our ideas in astronomy are based on this really enormous extrapolation, so anything we can do to see whether this is right or not on these scales is just enormously important,” Gunn said. “It adds another brick to the foundation that underlies what we do.”
GR is one, of two, core theories underlying all of contemporary astrophysics and cosmology (the other is the Standard Model of particle physics, a quantum theory); it explains everything from black holes to the Big Bang.
In recent years, several alternatives to general relativity have been proposed. These modified theories of gravity depart from general relativity on large scales to circumvent the need for dark energy, dark matter, or both. But because these theories were designed to match the predictions of general relativity about the expansion history of the universe, a factor that is central to current cosmological work, it has become crucial to know which theory is correct, or at least represents reality as best as can be approximated.
“We knew we needed to look at the large-scale structure of the universe and the growth of smaller structures composing it over time to find out,” Reyes said. The team used data from the Sloan Digital Sky Survey (SDSS), a long-term, multi-institution telescope project mapping the sky to determine the position and brightness of several hundred million galaxies and quasars.
By calculating the clustering of these galaxies, which stretch nearly one-third of the way to the edge of the universe, and analyzing their velocities and distortion from intervening material – due to weak lensing, primarily by dark matter – the researchers have shown that Einstein’s theory explains the nearby universe better than alternative theories of gravity.
The Princeton scientists studied the effects of gravity on the SDSS galaxies and clusters of galaxies over long periods of time. They observed how this fundamental force drives galaxies to clump into larger collections of galaxies and how it shapes the expansion of the universe.
Critically, because relativity calls for the curvature of space to be equal to the curvature of time, the researchers could calculate whether light was influenced in equal amounts by both, as it should be if general relativity holds true.
“This is the first time this test was carried out at all, so it’s a proof of concept,” Mandelbaum said. “There are other astronomical surveys planned for the next few years. Now that we know this test works, we will be able to use it with better data that will be available soon to more tightly constrain the theory of gravity.”
Firming up the predictive powers of GR can help scientists better understand whether current models of the universe make sense, the scientists said.
“Any test we can do in building our confidence in applying these very beautiful theoretical things but which have not been tested on these scales is very important,” Gunn said. “It certainly helps when you are trying to do complicated things to understand fundamentals. And this is a very, very, very fundamental thing.”
“The nice thing about going to the cosmological scale is that we can test any full, alternative theory of gravity, because it should predict the things we observe,” said co-author Uros Seljak, a professor of physics and of astronomy at UC Berkeley and a faculty scientist at Lawrence Berkeley National Laboratory who is currently on leave at the Institute of Theoretical Physics at the University of Zurich. “Those alternative theories that do not require dark matter fail these tests.”
Sources: “Princeton scientists say Einstein’s theory applies beyond the solar system” (Princeton University), “Study validates general relativity on cosmic scale, existence of dark matter” (University of California Berkeley), “Confirmation of general relativity on large scales from weak lensing and galaxy velocities” (Nature, arXiv preprint)
What better place to look for dark matter than down a mine shaft? A research team from the University of Florida have spent nine years monitoring for any signs of the elusive stuff using germanium and silicon detectors cooled down to a fraction of a degree above absolute zero. And the result? A couple of maybes and a gritty determination to keep looking.
The case for dark matter can be appreciated by considering the solar system where, to stay in orbit around the Sun, Mercury has to move at 48 kilometers a second, while distant Neptune can move at a leisurely 5 kilometers a second. Surprisingly, this principle doesn’t apply in the Milky Way or in other galaxies we have observed. Broadly speaking, you can find stuff in the outer parts of a spiral galaxy that is moving just as fast as stuff that is close in to the galactic centre. This is puzzling, particularly since there doesn’t seem to be enough gravity in the system to hold onto the rapidly orbiting stuff in the outer parts – which should just fly off into space.
So, we need more gravity to explain how galaxies rotate and stay together – which means we need more mass than we can observe – and this is why we invoke dark matter. Invoking dark matter also helps to explain why galaxy clusters stay together and explains large scale gravitational lensing effects, such as can be seen in the Bullet Cluster (pictured above).
Computer modeling suggests that galaxies may have dark matter halos, but they also have dark matter distributed throughout their structure – and taken together, all this dark matter represents up to 90% of a galaxy’s total mass.
Current thinking is that a small component of dark matter is baryonic, meaning stuff that is composed of protons and neutrons – in the form of cold gas as well as dense, non-radiant objects such black holes, neutron stars, brown dwarfs and orphaned planets (traditionally known as Massive Astrophysical Compact Halo Objects – or MACHOs).
But it doesn’t seem that there is nearly enough dark baryonic matter to account for the circumstantial effects of dark matter. Hence the conclusion that most dark matter must be non-baryonic, in the form of Weakly Interacting Massive Particles (or WIMPs).
By inference, WIMPS are transparent and non-reflective at all wavelengths and probably don’t carry a charge. Neutrinos, which are produced in abundance from the fusion reactions of stars, would fit the bill nicely except they don’t have enough mass. The currently most favored WIMP candidate is a neutralino, a hypothetical particle predicted by supersymmetry theory.
The second Cryogenic Dark Matter Search Experiment (or CDMS II) runs deep underground in the Soudan iron mine in Minnesota, situated there so it should only intercept particles that can penetrate that deeply underground. The CDMS II solid crystal detectors seek ionization and phonon events which can be used to distinguish between electron interactions – and nuclear interactions. It is assumed that a dark matter WIMP particle will ignore electrons, but potentially interact with (i.e. bounce off) a nucleus.
Two possible events have been reported by the University of Florida team, who acknowledge their findings cannot be considered statistically significant, but may at least give some scope and direction to further research.
By indicating just how difficult to directly detect (i.e. just how ‘dark’) WIMPs really are – the CDMS II findings indicate the sensitivity of the detectors needs to bumped up a notch.
[/caption]
Galaxy density in the Cosmic Evolution Survey (COSMOS) field, with colors representing the redshift of the galaxies, ranging from redshift of 0.2 (blue) to 1 (red). Pink x-ray contours show the extended x-ray emission as observed by XMM-Newton.
Dark matter (actually cold, dark – non-baryonic – matter) can be detected only by its gravitational influence. In clusters and groups of galaxies, that influence shows up as weak gravitational lensing, which is difficult to nail down. One way to much more accurately estimate the degree of gravitational lensing – and so the distribution of dark matter – is to use the x-ray emission from the hot intra-cluster plasma to locate the center of mass.
And that’s just what a team of astronomers have recently done … and they have, for the first time, given us a handle on how dark matter has evolved over the last many billion years.
COSMOS is an astronomical survey designed to probe the formation and evolution of galaxies as a function of cosmic time (redshift) and large scale structure environment. The survey covers a 2 square degree equatorial field with imaging by most of the major space-based telescopes (including Hubble and XMM-Newton) and a number of ground-based telescopes.
Understanding the nature of dark matter is one of the key open questions in modern cosmology. In one of the approaches used to address this question astronomers use the relationship between mass and luminosity that has been found for clusters of galaxies which links their x-ray emissions, an indication of the mass of the ordinary (“baryonic”) matter alone (of course, baryonic matter includes electrons, which are leptons!), and their total masses (baryonic plus dark matter) as determined by gravitational lensing.
To date the relationship has only been established for nearby clusters. New work by an international collaboration, including the Max Planck Institute for Extraterrestrial Physics (MPE), the Laboratory of Astrophysics of Marseilles (LAM), and Lawrence Berkeley National Laboratory (Berkeley Lab), has made major progress in extending the relationship to more distant and smaller structures than was previously possible.
To establish the link between x-ray emission and underlying dark matter, the team used one of the largest samples of x-ray-selected groups and clusters of galaxies, produced by the ESA’s x-ray observatory, XMM-Newton.
Groups and clusters of galaxies can be effectively found using their extended x-ray emission on sub-arcminute scales. As a result of its large effective area, XMM-Newton is the only x-ray telescope that can detect the faint level of emission from distant groups and clusters of galaxies.
“The ability of XMM-Newton to provide large catalogues of galaxy groups in deep fields is astonishing,” said Alexis Finoguenov of the MPE and the University of Maryland, a co-author of the recent Astrophysical Journal (ApJ) paper which reported the team’s results.
Since x-rays are the best way to find and characterize clusters, most follow-up studies have until now been limited to relatively nearby groups and clusters of galaxies.
“Given the unprecedented catalogues provided by XMM-Newton, we have been able to extend measurements of mass to much smaller structures, which existed much earlier in the history of the Universe,” says Alexie Leauthaud of Berkeley Lab’s Physics Division, the first author of the ApJ study.
Gravitational lensing occurs because mass curves the space around it, bending the path of light: the more mass (and the closer it is to the center of mass), the more space bends, and the more the image of a distant object is displaced and distorted. Thus measuring distortion, or ‘shear’, is key to measuring the mass of the lensing object.
In the case of weak gravitational lensing (as used in this study) the shear is too subtle to be seen directly, but faint additional distortions in a collection of distant galaxies can be calculated statistically, and the average shear due to the lensing of some massive object in front of them can be computed. However, in order to calculate the lens’ mass from average shear, one needs to know its center.
“The problem with high-redshift clusters is that it is difficult to determine exactly which galaxy lies at the centre of the cluster,” says Leauthaud. “That’s where x-rays help. The x-ray luminosity from a galaxy cluster can be used to find its centre very accurately.”
Knowing the centers of mass from the analysis of x-ray emission, Leauthaud and colleagues could then use weak lensing to estimate the total mass of the distant groups and clusters with greater accuracy than ever before.
The final step was to determine the x-ray luminosity of each galaxy cluster and plot it against the mass determined from the weak lensing, with the resulting mass-luminosity relation for the new collection of groups and clusters extending previous studies to lower masses and higher redshifts. Within calculable uncertainty, the relation follows the same straight slope from nearby galaxy clusters to distant ones; a simple consistent scaling factor relates the total mass (baryonic plus dark) of a group or cluster to its x-ray brightness, the latter measuring the baryonic mass alone.
“By confirming the mass-luminosity relation and extending it to high redshifts, we have taken a small step in the right direction toward using weak lensing as a powerful tool to measure the evolution of structure,” says Jean-Paul Kneib a co-author of the ApJ paper from LAM and France’s National Center for Scientific Research (CNRS).
The origin of galaxies can be traced back to slight differences in the density of the hot, early Universe; traces of these differences can still be seen as minute temperature differences in the cosmic microwave background (CMB) – hot and cold spots.
“The variations we observe in the ancient microwave sky represent the imprints that developed over time into the cosmic dark-matter scaffolding for the galaxies we see today,” says George Smoot, director of the Berkeley Center for Cosmological Physics (BCCP), a professor of physics at the University of California at Berkeley, and a member of Berkeley Lab’s Physics Division. Smoot shared the 2006 Nobel Prize in Physics for measuring anisotropies in the CMB and is one of the authors of the ApJ paper. “It is very exciting that we can actually measure with gravitational lensing how the dark matter has collapsed and evolved since the beginning.”
One goal in studying the evolution of structure is to understand dark matter itself, and how it interacts with the ordinary matter we can see. Another goal is to learn more about dark energy, the mysterious phenomenon that is pushing matter apart and causing the Universe to expand at an accelerating rate. Many questions remain unanswered: Is dark energy constant, or is it dynamic? Or is it merely an illusion caused by a limitation in Einstein’s General Theory of Relativity?
The tools provided by the extended mass-luminosity relationship will do much to answer these questions about the opposing roles of gravity and dark energy in shaping the Universe, now and in the future.
Sources: ESA, and a paper published in the 20 January, 2010 issue of the Astrophysical Journal (arXiv:0910.5219 is the preprint)