Now We Know That Dark Matter Isn’t Primordial Black Holes

For over fifty years, scientists have theorized that roughly 85% of matter in the Universe’s is made up of a mysterious, invisible mass. Since then, multiple observation campaigns have indirectly witnessed the effects that this “Dark Matter” has on the Universe. Unfortunately, all attempts to detect it so far have failed, leading scientists to propose some very interesting theories about its nature.

One such theory was offered by the late and great Stephen Hawking, who proposed that the majority of dark matter may actually be primordial black holes (PBH) smaller than a tenth of a millimeter in diameter. But after putting this theory through its most rigorous test to date, an international team of scientists led from the Kavli Institute for the Physics and Mathematics of the Universe (IPMU) has confirmed that it is not.

Continue reading “Now We Know That Dark Matter Isn’t Primordial Black Holes”

Massive Photons Could Explain Dark Matter, But Don’t

I’ll be the first to admit that we don’t understand dark matter. We do know for sure that something funny is going on at large scales in the universe (“large” here meaning at least as big as galaxies). In short, the numbers just aren’t adding up. For example, when we look at a galaxy and count up all the hot glowing bits like stars and gas and dust, we get a certain mass. When we use any other technique at all to measure the mass, we get a much higher number. So the natural conclusion is that not all the matter in the universe is all hot and glowy. Maybe some if it is, you know, dark.

But hold on. First we should check our math. Are we sure we’re not just getting some physics wrong?

Continue reading “Massive Photons Could Explain Dark Matter, But Don’t”

Meet WFIRST, The Space Telescope with the Power of 100 Hubbles

WFIRST ain’t your grandma’s space telescope. Despite having the same size mirror as the surprisingly reliable Hubble Space Telescope, clocking in at 2.4 meters across, this puppy will pack a punch with a gigantic 300 megapixel camera, enabling it to snap a single image with an area a hundred times greater than the Hubble.

With that fantastic camera and the addition of one of the most sensitive coronagraphs ever made – letting it block out distant starlight on a star-by-star basis – this next-generation telescope will uncover some of the deepest mysteries of the cosmos.

Oh, and also find about a million exoplanets.

Continue reading “Meet WFIRST, The Space Telescope with the Power of 100 Hubbles”

Hubble Finds a Galaxy with Almost no Dark Matter

Since the 1960s, astrophysicists have postulated that in addition to all the matter that we can see, the Universe is also filled with a mysterious, invisible mass. Known as “Dark Matter”, it’s existence was proposed to explain the “missing mass” of the Universe, and is now considered a fundamental part of it. Not only is it theorized to make up about 80% of the Universe’s mass, it is also believed to have played a vital role in the formation and evolution of galaxies.

However, a recent finding may throw this entire cosmological perspective sideways. Based on observations made using the NASA/ESA Hubble Space Telescope and other observatories around the world, astronomers have found a nearby galaxy (NGC 1052-DF2) that does not appear to have any dark matter. This object is unique among galaxies studied so far, and could force a reevaluation of our predominant cosmological models.

The study which details their findings, titled “A galaxy lacking dark matter“, recently appeared in the journal Nature. Led by Pieter van Dokkum of Yale University, the study also included members from the Max Planck Institute for Astronomy, San Jose State University, the University of California Observatories, the University of Toronto, and the Harvard-Smithsonian Center for Astrophysics

Image of the ultra diffuse galaxy NGC 1052-DF2, created from images forming part of the Digitized Sky Survey 2. Credit:ESA/Hubble, NASA, Digitized Sky Survey 2. Acknowledgement: Davide de Martin

For the sake of their study, the team consulted data from the Dragonfly Telephoto Array (DFA), which was used to identify NGC 1052-DF2. Based on data from Hubble, the team was able to determined its distance – 65 million light-years from the Solar System – as well as its size and brightness. In addition, the team discovered that NGC 1052-DF52 is larger than the Milky Way but contains about 250 times fewer stars, which makes it an ultra diffuse galaxy.

As van Dokkum explained, NGC 1052-DF2 is so diffuse that it’s essentially transparent. “I spent an hour just staring at this image,” he said. “This thing is astonishing: a gigantic blob so sparse that you see the galaxies behind it. It is literally a see-through galaxy.”

Using data from the Sloan Digital Sky Survey (SDSS), the Gemini Observatory, and the Keck Observatory, the team studied the galaxy in more detail. By measuring the dynamical properties of ten globular clusters orbiting the galaxy, the team was able to infer an independent value of the galaxy’s mass – which is comparable to the mass of the stars in the galaxy.

This led the team to conclude that either NGC 1052-DF2 contains at least 400 times less dark matter than is predicted for a galaxy of its mass, or none at all. Such a finding is unprecedented in the history of modern astronomy and defied all predictions. As Allison Merritt – an astronomer from Yale University, the Max Planck Institute for Astronomy and a co-author on the paper – explained:

“Dark matter is conventionally believed to be an integral part of all galaxies — the glue that holds them together and the underlying scaffolding upon which they are built… There is no theory that predicts these types of galaxies — how you actually go about forming one of these things is completely unknown.”

“This invisible, mysterious substance is by far the most dominant aspect of any galaxy. Finding a galaxy without any is completely unexpected; it challenges standard ideas of how galaxies work,” added van Dokkum.

However, it is important to note that the discovery of a galaxy without dark matter does not disprove the theory that dark matter exists. In truth, it merely demonstrates that dark matter and galaxies are capable of being separate, which could mean that dark matter is bound to ordinary matter through no force other than gravity. As such, it could actually help scientists refine their theories of dark matter and its role in galaxy formation and evolution.

In the meantime, the researchers already have some ideas as to why dark matter is missing from NGC 1052-DF2. On the one hand, it could have been the result of a cataclysmic event, where the birth of a multitude of massive stars swept out all the gas and dark matter. On the other hand, the growth of the nearby massive elliptical galaxy (NGC 1052) billions of years ago could have played a role in this deficiency.

However, these theories do not explain how the galaxy formed. To address this, the team is analyzing images that Hubble took of 23 other ultra-diffuse galaxies for more dark-matter deficient galaxies. Already, they have found three that appear to be similar to NGC 1052-DF2, which could indicate that dark-matter deficient galaxies could be a relatively common occurrence.

If these latest findings demonstrate anything, it is that the Universe is like an onion. Just when you think you have it figured out, you peal back an additional layer and find a whole new set of mysteries. They also demonstrate that after 28 years of faithful service, the Hubble Space Telescope is still capable of teaching us new things. Good thing too, seeing as the launch of its successor has been delayed until 2020!

Further Reading: Hubble Space Telescope

The First Results From The IllustrisTNG Simulation Of The Universe Has Been Completed, Showing How Our Cosmos Evolved From The Big Bang

The first results of the IllustrisTNG Project have been published in three separate studies, and they’re shedding new light on how black holes shape the cosmos, and how galaxies form and grow. The IllustrisTNG Project bills itself as “The next generation of cosmological hydrodynamical simulations.” The Project is an ongoing series of massive hydrodynamic simulations of our Universe. Its goal is to understand the physical processes that drive the formation of galaxies.

At the heart of IllustriousTNG is a state of the art numerical model of the Universe, running on one of the most powerful supercomputers in the world: the Hazel Hen machine at the High-Performance Computing Center in Stuttgart, Germany. Hazel Hen is Germany’s fastest computer, and the 19th fastest in the world.

The Hazel Hen Supercomputer is based on Intel processors and Cray network technologies. Image: IllustrisTNG

Our current cosmological model suggests that the mass-energy density of the Universe is dominated by dark matter and dark energy. Since we can’t observe either of those things, the only way to test this model is to be able to make precise predictions about the structure of the things we can see, such as stars, diffuse gas, and accreting black holes. These visible things are organized into a cosmic web of sheets, filaments, and voids. Inside these are galaxies, which are the basic units of cosmic structure. To test our ideas about galactic structure, we have to make detailed and realistic simulated galaxies, then compare them to what’s real.

Astrophysicists in the USA and Germany used IllustrisTNG to create their own universe, which could then be studied in detail. IllustrisTNG correlates very strongly with observations of the real Universe, but allows scientists to look at things that are obscured in our own Universe. This has led to some very interesting results so far, and is helping to answer some big questions in cosmology and astrophysics.

How Do Black Holes Affect Galaxies?

Ever since we’ve learned that galaxies host supermassive black holes (SMBHs) at their centers, it’s been widely believed that they have a profound influence on the evolution of galaxies, and possibly on their formation. That’s led to the obvious question: How do these SMBHs influence the galaxies that host them? Illustrious TNG set out to answer this, and the paper by Dr. Dylan Nelson at the Max Planck Institute for Astrophysics shows that “the primary driver of galaxy color transition is supermassive blackhole feedback in its low-accretion state.”

“The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” – Dr. Dylan Nelson, Max Planck Institute for Astrophysics,

Galaxies that are still in their star-forming phase shine brightly in the blue light of their young stars. Then something changes and the star formation ends. After that, the galaxy is dominated by older, red stars, and the galaxy joins a graveyard full of “red and dead” galaxies. As Nelson explains, “The only physical entity capable of extinguishing the star formation in our large elliptical galaxies are the supermassive black holes at their centers.” But how do they do that?

Nelson and his colleagues attribute it to supermassive black hole feedback in its low-accretion state. What that means is that as a black hole feeds, it creates a wind, or shock wave, that blows star-forming gas and dust out of the galaxy. This limits the future formation of stars. The existing stars age and turn red, and few new blue stars form.

This is a rendering of gas velocity in a massive galaxy cluster in IllustrisTNG. Black areas are hardly moving, and white areas are moving at greater than 1000km/second. The black areas are calm cosmic filaments, the white areas are near super-massive black holes (SMBHs). The SMBHs are blowing away the gas and preventing star formation. Image: IllustrisTNG

How Do Galaxies Form and How Does Their Structure Develop?

It’s long been thought that large galaxies form when smaller galaxies join up. As the galaxy grows larger, its gravity draws more smaller galaxies into it. During these collisions, galaxies are torn apart. Some stars will be scattered, and will take up residence in a halo around the new, larger galaxy. This should give the newly-created galaxy a faint background glow of stellar light. But this is a prediction, and these pale glows are very hard to observe.

“Our predictions can now be systematically checked by observers.” – Dr. Annalisa Pillepich (Max Planck Institute for Astrophysics)

IllustrisTNG was able to predict more accurately what this glow should look like. This gives astronomers a better idea of what to look for when they try to observe this pale stellar glow in the real Universe. “Our predictions can now be systematically checked by observers,” Dr. Annalisa Pillepich (MPIA) points out, who led a further IllustrisTNG study. “This yields a critical test for the theoretical model of hierarchical galaxy formation.”

A composite image from IllustrisTNG. Panels on the left show galaxy-galaxy interactions and the fine-grained structure of extended stellar halos. Panels on the right show stellar light projections from two massive central galaxies at the present day. It’s easy to see how the light from massive central galaxies overwhelms the light from stellar halos. Image: IllustrisTNG

IllustrisTNG is an on-going series of simulations. So far, there have been three IllustrisTNG runs, each one creating a larger simulation than the previous one. They are TNG 50, TNG 100, and TNG 300. TNG300 is much larger than TNG50 and allows a larger area to be studied which reveals clues about large-scale structure. Though TNG50 is much smaller, it has much more precise detail. It gives us a more detailed look at the structural properties of galaxies and the detailed structure of gas around galaxies. TNG100 is somewhere in the middle.

TNG 50, TNG 100, and TNG 300. Image: IllustrisTNG

IllustrisTNG is not the first cosmological hydrodynamical simulation. Others include Eagle, Horizon-AGN, and IllustrisTNG’s predecessor, Illustris. They have shown how powerful these predictive theoretical models can be. As our computers grow more powerful and our understanding of physics and cosmology grow along with them, these types of simulations will yield greater and more detailed results.

Space Station-Based Experiment Might Have Found Evidence of Dark Matter Destroying Itself

Since it was first proposed in the 1960s to account for all the “missing mass” in the Universe, scientists have been trying to find evidence of dark matter. This mysterious, invisible mass theoretically accounts for 26.8% of the baryonic matter (aka. visible matter) out there. And yet, despite almost fifty years of ongoing research and exploration, scientists have not found any direct evidence of this missing mass.

However, according to two new research papers that were recently published in the journal Physical Review Letters, we may have gotten our first glimpse of dark matter thanks to an experiment aboard the International Space Station. Known as the Alpha Magnetic Spectrometer (AMS-02), this a state-of-the-art particle physics detector has been recording cosmic rays since 2011 – which some theorize are produced by the annihilation of dark matter particles.

Like its predecessor (the AMS), the AMS-02 is the result of collaborative work and testing by an international team composed of 56 institutes from 16 countries. With sponsorship from the US Department of Energy (DOE) and overseen by the Johnson Space Center’s AMS Project Office, the AMS-02 was delivered to the ISS aboard the Space Shuttle Endeavour on May 16th, 2011.

Artist’s impression of the AMS-02 instrument. Credit: NASA/JSC

Ostensibly, the AMS-02 is designed to monitor cosmic rays to see how much in the way of antiprotons are falling to Earth. But for the sake of their research, the two science teams also been consulted the data it has been collecting to test theories about dark matter. To break it down, the WIMPs theory of dark matter states that it is made up of Weakly-Interacted Massive Particles (WIMPS), protons and antiprotons are the result of WIMPs colliding.

By monitoring the number of antiprotons that interact with the AMS-02, two science teams (who were working independently of each other) hoped to infer whether or not any of the antiprotons being detected could be caused by WIMP collisions. The difficulty in this, however, is knowing what would constitute an indication, as cosmic rays have many sources and the properties of WIMPs are not entirely defined.

To do this, the two teams developed mathematical models to predict the cosmic ray background, and thus isolate the number of antiprotons that AMS-02 would detect. They further incorporated fine-tuned estimates of the expected mass of the WIMPs, until it fit with the AMS-02 data. One team, led by Alessandro Cuoco, was made up of researchers from the Institute for Theoretical Particle Physics and Cosmology.

Using computer simulations, Cuoco and his colleagues examined the AMS-02 data based on two scenarios – one which accounted for dark matter and one which did not. As they indicate in their study, they not only concluded that the presence of antiprotons created by WIMP collisions better fit the data, but they were also able to constrain the mass of dark matter to about 80 GeV (about 85 times the mass of a single proton or antiproton).

According to supersymmetry, dark-matter particles known as WIMPs annihilate each other, creating a cascade of particles and radiation. Credit: Sky & Telescope / Gregg Dinderman.

As they state in their paper:

“[T]he very accurate recent measurement of the CR antiproton flux by the AMS-02 experiment allows [us] to achieve unprecedented sensitivity to possible DM signals, a factor ~4 stronger than the limits from gamma-ray observations of dwarf galaxies. Further, we find an intriguing indication for a DM signal in the antiproton flux, compatible with the DM interpretation of the Galactic center gamma-ray excess.”

The other team was made up of researchers from the Chinese Academy of Sciences, Nanjing University, the University of Science and Technology of China, and the National Center for Theoretical Sciences. Led by Ming-Yang Cui of Nanjing University, this team made estimates of the background parameters for cosmic rays by using prior data from previous boron-to-carbon ratio and proton measurements.

These measurements, which determine the rate at which boron decays into carbon, can be used to guage the distance that boron molecules travel through space. In this case, they were combined with proton measurements to determine background levels for cosmic rays. They incorporated this data into a Bayesian Analysis framework (i.e. a statistical model used to determine probabilities) to see how many antiprotons could be attributed to WIMP collisions.

The results, as they state it in their paper were quite favorable and produced similar mass estimates to the study led by Cuoco’s team. “Compared with the astrophysical background only hypothesis, we find that a dark matter signal is favored,” they write. “The rest mass of the dark matter particles is ?20 – 80 GeV.”


The AMS being delivered to the ISS by the Space Shuttle Endeavour in 2011. Credit: NASA

What’s more, both scientific teams obtained similar estimates when it came to cross-section measurements of dark matter – i.e. the likelihood of collisions happening based on how densely dark matter is distributed. For example, Cuoco’s team obtained a cross-section estimate of 3 x 10-26 per cm³ while Cui’s team obtained an estimate that ranged from 0.2 5 × 10-26 per cm³.

The fact that two scientific teams, which were operating independently of each other, came to very similar conclusions based on the same data is highly encouraging. While it is not definitive proof of dark matter, it is certainly a step in the right direction. At best, it shows that we are getting closer to creating a detailed picture of what dark matter looks like.

And in the meantime, both teams acknowledge that further work is necessary. Cuoco and his team also suggest what further steps should be taken. “Confirmation of the signal will require a more accurate study of the systematic uncertainties,” they write, “i.e., the antiproton production cross-section, and the modeling of the effect of solar modulation.”

While scientists have attempted to find evidence of dark matter by monitoring cosmic rays in the past, the AMS-02 stands apart because of its extreme sensitivity. As of May 8th, the spectrometer has conducted measurements on 100 billion particles. As of the penning of this article, that number has increased to over 100,523,550,000!

Further Reading: PBS Nova Next, Ars Technica, Physical Review Letters, (2)

Researchers Image Dark Matter Bridge Between Galaxies

This false color, composite image shows two galaxies, white, connected by a bridge of dark matter, red. The two galaxies are about 40 light years apart. Image: S. Epps & M. Hudson / University of Waterloo

Dark matter is mysterious stuff, because we can’t really “see” it. But that hasn’t stopped scientists from researching it, and from theorizing about it. One theory says that there should be filament structures of dark matter connecting galaxies. Scientists from the University of Waterloo have now imaged one of those dark matter filaments for the first time.

The two scientists, Seth D. Epps and Michael J. Hudson, present their results in a paper at the Monthly Notices of the Royal Astronomy Society.

Theory predicts that filaments of dark matter connect galaxies together, by reaching from the dark matter halo of one galaxy to the same halo in another galaxy. Other researchers have found dark matter filaments connecting entire galaxy clusters, but this is the first time that filaments have been imaged between individual galaxies.

“This image moves us beyond predictions to something we can see and measure.” – Mike Hudson, University of Waterloo

“For decades, researchers have been predicting the existence of dark-matter filaments between galaxies that act like a web-like superstructure connecting galaxies together,” said Mike Hudson, a professor of astronomy at the University of Waterloo. “This image moves us beyond predictions to something we can see and measure.”

Dark matter makes up about 25% of the Universe. But it doesn’t shine, reflect, or interact with light in any way, so it’s difficult to study. The only way we can really study it is by observing gravity. In this study, the pair of astronomers used the weak gravitational lensing technique.

Weak gravitational lensing relies on the effect that mass has on light. Enough concentrated mass in the foreground—dark matter in this case—will warp light from distant sources in the background.

When dealing with something as large as a super-massive Black Hole, gravitational lensing is quite pronounced. But galaxy-to-galaxy filaments of dark matter are much less dense than a black hole, so their individual effect is minimal. What the astronomers needed was the combined data from multiple galaxy pairs in order to detect the weak gravitational lensing.

Key to this study is the Canada-France-Hawaii Telescope. It performed a multi-year sky survey that laid the groundwork for this study. The researchers combined lensing images of over 23,000 pairs of galaxies 4.5 billion light years away. The resulting composite image revealed the filament bridge between the two galaxies.

“By using this technique, we’re not only able to see that these dark matter filaments in the universe exist, we’re able to see the extent to which these filaments connect galaxies together.” – Seth D. Epps, University of Waterloo

We still don’t know what dark matter is, but the fact that scientists were able to predict these filaments, and then actually find them, shows that we’re making progress understanding it.

We’ve known about the large scale structure of the Universe for some time, and we know that dark matter is a big part of it. Galaxies tend to cluster together, under the influence of dark matter’s gravitational pull. Finding a dark matter bridge between galaxies is an intriguing discovery. It at least takes a little of the mystery out of dark matter.

Towards A New Understanding Of Dark Matter

In February 2016, LIGO detected gravity waves for the first time. As this artist's illustration depicts, the gravitational waves were created by merging black holes. The third detection just announced was also created when two black holes merged. Credit: LIGO/A. Simonnet.

Dark matter remains largely mysterious, but astrophysicists keep trying to crack open that mystery. Last year’s discovery of gravity waves by the Laser Interferometer Gravitational Wave Observatory (LIGO) may have opened up a new window into the dark matter mystery. Enter what are known as ‘primordial black holes.’

Theorists have predicted the existence of particles called Weakly Interacting Massive Particles (WIMPS). These WIMPs could be what dark matter is made of. But the problem is, there’s no experimental evidence to back it up. The mystery of dark matter is still an open case file.

When LIGO detected gravitational waves last year, it renewed interest in another theory attempting to explain dark matter. That theory says that dark matter could actually be in the form of Primordial Black Holes (PBHs), not the aforementioned WIMPS.

Primordial black holes are different than the black holes you’re probably thinking of. Those are called stellar black holes, and they form when a large enough star collapses in on itself at the end of its life. The size of these stellar black holes is limited by the size and evolution of the stars that they form from.

This artist’s drawing shows a stellar black hole as it pulls matter from a blue star beside it. Could the stellar black hole’s cousin, the primordial black hole, account for the dark matter in our Universe?
Credits: NASA/CXC/M.Weiss

Unlike stellar black holes, primordial black holes originated in high density fluctuations of matter during the first moments of the Universe. They can be much larger, or smaller, than stellar black holes. PBHs could be as small as asteroids or as large as 30 solar masses, even larger. They could also be more abundant, because they don’t require a large mass star to form.

When two of these PBHs larger than about 30 solar masses merge together, they would create the gravitational waves detected by LIGO. The theory says that these primordial black holes would be found in the halos of galaxies.

If there are enough of these intermediate sized PBHs in galactic halos, they would have an effect on light from distant quasars as it passes through the halo. This effect is called ‘micro-lensing’. The micro-lensing would concentrate the light and make the quasars appear brighter.

A depiction of quasar microlensing. The microlensing object in the foreground galaxy could be a star (as depicted), a primordial black hole, or any other compact object. Credit: NASA/Jason Cowan (Astronomy Technology Center).

The effect of this micro-lensing would be stronger the more mass a PBH has, or the more abundant the PBHs are in the galactic halo. We can’t see the black holes themselves, of course, but we can see the increased brightness of the quasars.

Working with this assumption, a team of astronomers at the Instituto de Astrofísica de Canarias examined the micro-lensing effect on quasars to estimate the numbers of primordial black holes of intermediate mass in galaxies.

“The black holes whose merging was detected by LIGO were probably formed by the collapse of stars, and were not primordial black holes.” -Evencio Mediavilla

The study looked at 24 quasars that are gravitationally lensed, and the results show that it is normal stars like our Sun that cause the micro-lensing effect on distant quasars. That rules out the existence of a large population of PBHs in the galactic halo. “This study implies “says Evencio Mediavilla, “that it is not at all probable that black holes with masses between 10 and 100 times the mass of the Sun make up a significant fraction of the dark matter”. For that reason the black holes whose merging was detected by LIGO were probably formed by the collapse of stars, and were not primordial black holes”.

Depending on you perspective, that either answers some of our questions about dark matter, or only deepens the mystery.

We may have to wait a long time before we know exactly what dark matter is. But the new telescopes being built around the world, like the European Extremely Large Telescope, the Giant Magellan Telescope, and the Large Synoptic Survey Telescope, promise to deepen our understanding of how dark matter behaves, and how it shapes the Universe.

It’s only a matter of time before the mystery of dark matter is solved.

New Theory of Gravity Does Away With Need for Dark Matter

Erik Verlinde explains his new view of gravity

Let’s be honest. Dark matter’s a pain in the butt. Astronomers have gone to great lengths to explain why is must exist and exist in huge quantities, yet it remains hidden. Unknown. Emitting no visible energy yet apparently strong enough to keep galaxies in clusters from busting free like wild horses, it’s everywhere in vast quantities. What is the stuff – axions, WIMPS, gravitinos, Kaluza Klein particles?

Estimated distribution of matter and energy in the universe. Credit: NASA
Estimated distribution of matter and energy in the universe. Credit: NASA

It’s estimated that 27% of all the matter in the universe is invisible, while everything from PB&J sandwiches to quasars accounts for just 4.9%.  But a new theory of gravity proposed by theoretical physicist Erik Verlinde of the University of Amsterdam found out a way to dispense with the pesky stuff.

formation of complex symmetrical and fractal patterns in snowflakes exemplifies emergence in a physical system.
Snowflakes exemplify the concept of emergence with their complex symmetrical and fractal patterns created when much simpler pieces join together. Credit: Bob King

Unlike the traditional view of gravity as a fundamental force of nature, Verlinde sees it as an emergent property of space.  Emergence is a process where nature builds something large using small, simple pieces such that the final creation exhibits properties that the smaller bits don’t. Take a snowflake. The complex symmetry of a snowflake begins when a water droplet freezes onto a tiny dust particle. As the growing flake falls, water vapor freezes onto this original crystal, naturally arranging itself into a hexagonal (six-sided) structure of great beauty. The sensation of temperature is another emergent phenomenon, arising from the motion of molecules and atoms.

So too with gravity, which according to Verlinde, emerges from entropy. We all know about entropy and messy bedrooms, but it’s a bit more subtle than that. Entropy is a measure of disorder in a system or put another way, the number of different microscopic states a system can be in. One of the coolest descriptions of entropy I’ve heard has to do with the heat our bodies radiate. As that energy dissipates in the air, it creates a more disordered state around us while at the same time decreasing our own personal entropy to ensure our survival. If we didn’t get rid of body heat, we would eventually become disorganized (overheat!) and die.

The more massive the object, the more it distorts spacetime. Credit: LIGO/T. Pyle
The more massive the object, the more it distorts space-time, shown here as the green mesh. Earth orbits the Sun by rolling around the dip created by the Sun’s mass in the fabric of space-time. It doesn’t fall into the Sun because it also possesses forward momentum. Credit: LIGO/T. Pyle

Emergent or entropic gravity, as the new theory is called, predicts the exact same deviation in the rotation rates of stars in galaxies currently attributed to dark matter. Gravity emerges in Verlinde’s view from changes in fundamental bits of information stored in the structure of space-time, that four-dimensional continuum revealed by Einstein’s general theory of relativity. In a word, gravity is a consequence of entropy and not a fundamental force.

Space-time, comprised of the three familiar dimensions in addition to time, is flexible. Mass warps the 4-D fabric into hills and valleys that direct the motion of smaller objects nearby. The Sun doesn’t so much “pull” on the Earth as envisaged by Isaac Newton but creates a great pucker in space-time that Earth rolls around in.

In a 2010 article, Verlinde showed how Newton’s law of gravity, which describes everything from how apples fall from trees to little galaxies orbiting big galaxies, derives from these underlying microscopic building blocks.

His latest paper, titled Emergent Gravity and the Dark Universe, delves into dark energy’s contribution to the mix.  The entropy associated with dark energy, a still-unknown form of energy responsible for the accelerating expansion of the universe, turns the geometry of spacetime into an elastic medium.

“We find that the elastic response of this ‘dark energy’ medium takes the form of an extra ‘dark’ gravitational force that appears to be due to ‘dark matter’,” writes Verlinde. “So the observed dark matter phenomena is a remnant, a memory effect, of the emergence of spacetime together with the ordinary matter in it.”

Rotation curve of the typical spiral galaxy M 33 (yellow and blue points with errorbars) and the predicted one from distribution of the visible matter (white line). The discrepancy between the two curves is accounted for by adding a dark matter halo surrounding the galaxy. Credit: Public domain / Wikipedia
This diagram shows rotation curves of stars in M33, a typical spiral galaxy. The vertical scale is speed and the horizontal is distance from the galaxy’s nucleus. Normally, we expect stars to slow down the farther they are from galactic center (bottom curve), but in fact they revolve much faster (top curve). The discrepancy between the two curves is accounted for by adding a dark matter halo surrounding the galaxy. Credit: Public domain / Wikipedia

I’ll be the first one to say how complex Verlinde’s concept is, wrapped in arcane entanglement entropy, tensor fields and the holographic principal, but the basic idea, that gravity is not a fundamental force, makes for a fascinating new way to look at an old face.

Physicists have tried for decades to reconcile gravity with quantum physics with little success. And while Verlinde’s theory should be rightly be taken with a grain of salt, he may offer a way to combine the two disciplines into a single narrative that describes how everything from falling apples to black holes are connected in one coherent theory.