Join the Million Crater Challenge

Like a challenge? Right now you can join in a contest to mark a million craters, as part of the Moon Mappers project. “Our challenge to you is to try and observe 1 million craters on the Moon before the full Moon again rises in the evening sky on May 5,” said Dr. Pamela Gay, who leads the Cosmoquest program of citizen science project. “Help us ‘illuminate’ the Moon with new scientific discoveries one crater at a time.”

As an enticement to join in, there are prizes!

There will be prizes for the ten CosmoQuest community members who make the observations closest to each interval of 100,000, and for 10 additional randomly selected community members who participate in this challenge. Prizes include Surly Amy pendants, Astrosphere posters, and Lunar Reconnaissance Orbiter lithographs.

Are there a million craters on the Moon? Dr. Gay said that with LRO, craters the size on 1 meter can be seen. But for Moon Mappers, participants are asked to identify craters nine meters in diameter. “There are literally millions of craters at that size,” she said.

Moon Mappers is not only fun, but your contributions help build a new scientific understanding of the Moon. The Moon Mappers team has already published their first scientific paper based on the work done by citizen scientists, so help them keep going to discover as much as we can about the Moon.

Check out Moon Mappers!

Help Track the Effects of Light Pollution with GLOBE at Night

Image Credit: GLOBE at Night/NOAO

[/caption]

Going on right now is your last chance in 2012 to take just a few minutes to get involved in the GLOBE at Night campaign to measure the brightness of your night sky. GLOBE at Night is a citizen-science project to raise awareness of the impact of light pollution by inviting citizen-scientists to make naked-eye observations of the night sky in your area.

Here’s all the info you need in order to participate in GLOBE at Night:

Participating in GLOBE at Night requires only five easy steps:

1) Find your latitude and longitude.

2) Find Orion, Leo or Crux by going outside more than an hour after sunset (about 8-10pm local time).

3) Match your nighttime sky to one of the provided magnitude charts.

4) Report your observation.

5) Compare your observation to thousands around the world.

You can also use the new web application data submission process. The GLOBE at Night website is easy to use, comprehensive and holds an abundance of background information. The database is usable for comparisons with a variety of other databases, like how light pollution affects the foraging habits of bats.

People in 115 countries have contributed over 75,000 measurements during the past six years, making GLOBE at Night the most successful light pollution awareness campaign to date. So join in and help the cause!

Moon Mappers! Contribute to Lunar Science

Want to contribute to lunar science? The MoonMappers citizen science project is now live at CosmoQuest.org, and you can become part of the Lunar Reconnaissance Orbiter’s science team by exploring high-resolution Lunar images and mapping out scientifically interesting features. MoonMappers has been in a testing phase since January, and during the beta period, early participants marked over 150,000 craters and more than 4,000 other interesting features. With your help, scientists will be able to better determine ages of different regions, find historic spikes in the impact rate, determine lunar regolith depth and what may lie under the crust, and make conclusions about the physics of giant explosions on the Moon’s surface.

“Craters can reveal all sorts of different properties about the Moon and planetary surfaces in general,” said project co-science lead Stuart Robbins, from the Southwest Research Institute.
Continue reading “Moon Mappers! Contribute to Lunar Science”

Get Your Own Unprecedented 3-D View of the Moon

This AIPP image is a 1000-by-666-pixel section of the full-resolution 3-D map that Jeffrey Ambrozia will create, which will be a 5398-by-7000-pixel graphic. This shows Heinsius crater. Image courtesy Jeffrey Ambroziak.

[/caption]

Love 3-D images? Interested in maps? Want to explore the Moon? Then a new Kickstarter project may be just what you are looking for. Jeffrey Ambroziak, creator of a specialized 3-D map projection method, will be producing what he calls the first true 3-D map of the Moon, and he is offering space enthusiasts the chance to get either digital or paper copies of the map, created from recently released data from the Lunar Reconnaissance Orbiter. Interest in the project has skyrocketed, and while the goal of $5,000 has already been reached by more than double that amount, Ambroziak is now thinking of what more he can offer to backers of his PopView 3D Moon Map.

“We’re at a place now where you can do some interesting research on your own, and it doesn’t necessarily require a large institution,” Ambroziak said by phone. “I love the idea of using Kickstarter to give interested and passionate space aficionados the opportunity to work with us.”

The maps will include not only 3-D views of the Moon’s surface, but on the “front side” will be “National Geographic-style” graphics and information.

Ambroziak said the backers who fund his project will be instrumental choosing the mapping locations and the information that is included.

“This will be very a very collaborative effort to pick the things we will put on the front of the map and the areas that we actually map in 3-D,” he told Universe Today. “As the Kickstarter project description makes clear, we are going to leverage the knowledge of all involved to produce a map that is as informative as it is innovative while letting everyone experience our excitement as the project takes shape. And in the end, everyone gets a copy of the map!”

Ambroziak added, “In the current age with NASA’s budget cuts and the space agency looking towards private enterprise more, there is now a place for interested people to create very interesting and useful space products. We spend billions of dollars to gather incredibly beautiful data of the Moon and Mars and much of it just sits around. We are looking to do our part to bring this data to life, and I’m proof of that you don’t have to sit around and wait for NASA to make an image from LROC data. We don’t have to wait anymore, we can do it ourselves.”

Ambroziak has been overwhelmed that his project is so popular. “I love the idea of the feedback that I’m getting already from people who are so excited about this project,” he said. Most gratifying was a top level pledge of $1,200 from former astronaut and shuttle pilot William Readdy, pledged $1200 to the project who wished Ambroziak “godspeed” in the effort. “It’s pretty neat when astronauts see the importance of what is being attempted,” Ambroziak said.

His patented Ambroziak Infinite Perspective Projection (AIPP) is a map projection method used for three-dimensional stereo visualization of geographic data, which allows viewers to see precise representation of data in 3-D, no matter what angle or distance the image is being viewed. He detailed the method in his book, Infinite Perspectives: Two Thousand Years of Three-Dimensional Mapmaking, (Princeton Architectural Press, 1999) and has previously created 3-D maps of Antarctica and Mars, which have been displayed at museums such as the Peabody Museum of Natural History.

I asked Ambroziak how far along he was with the project.

“I have downloaded all of the LROC imagery and digital elevation information,” he said. “I have further processed the image data to stretch out the contrast, computed shadows from the digital elevation model, and mixed the computed shadows back into the imagery to improve appearances. AIPP is then applied as desired to create 3D images. Specifically, imagery and digital elevation data is combined in accordance with a few chosen AIPP parameters (vertical exaggeration, view plane elevation, etc.) to produce the AIPP map.”

But that is only the technical part of the project, as the “front side” of the maps will be more artistic.

“I will be able to poll the backers for their preferred area of interest,” he said. “In short, you back the project, you have a say in the mapping of the Moon! Ultimately, I would like to perform a systematic mapping of the entire surface of the Moon in accordance with the USGS quad-map nomenclature and format. This is just the first step. This is Kickstarter – not start and then end.”

Check out the Kickstarter page for the “prizes” or incentives are for the various levels of funding. They range from getting a digital copy emailed to you, to complete posters, to an invitation to dinner for you and a guest with the Ambroziak, with food and drinks on him.

The Milky Way Galactic Disk – Forever Blowing Bubbles

Ten Milky Way Project images most-favourited by volunteers, in no particular order. Coordinates are image centres, image sizes are indicated by the zoom level (zoom).

[/caption]

Score another one for citizen science! In a study released just days ago, a new catalog containing over five thousand infrared bubble entries was added through the “Milky Way Project” website. The work was done independently by at least five participants who measured parameters for position, radius, thickness, eccentricity and position angle. Not only did their work focus on these areas, but the non-professionals were responsible for recovering the locations of at least 86% of additional bubble and HII catalogs. Cool stuff? You bet. Almost one third of the Milky Way Project’s studied bubbles are located at the edge of an even larger bubble – or have more lodged inside. This opens the door to further understanding the dynamics of triggered star formation!

Just what is the Milky Way Project? Thanks to the Galaxy Zoo and Zooniverse, scientists have been able to enlist the help of an extensive community of volunteers able to tackle and analyze huge amounts of data – data that contains information which computer algorithms might miss. In this case it’s visually searching through the Galactic plane for whole or broken ring-shaped structures in images done by Spitzer’s Galactic Legacy Infrared Survey Extraordinaire (GLIMPSE) project. Here the bubbles overlap and the structures are so complex that only humans can sort them out for now.

Screenshot of the Milky Way Project user interface.
Screenshot of the Milky Way Project user interface.
“The MWP is the ninth online citizen science project created using the Zooniverse Application Programming Interface
(API) tool set. The Zooniverse API is the core software supporting the activities of all Zooniverse citizen science projects.” says R. J. Simpson (et al). “Built originally for Galaxy Zoo 2, the software is now being used by 11 different projects. The Zooniverse API is designed primarily as a tool for serving up a large collection of `assets’ (for example, images or video) to an interface, and collecting back user-generated interactions with these assets.”

Through the interface, users mark the location of bubbles and other areas of significance such as small bubbles, green knots, dark nebulae, star clusters, galaxies, fuzzy red objects or simply unknowns. During this phase, the citizen scientist can make as many annotations as he or she wants before they submit their findings and receive a new assignment. Each annotated image is then stored in a database as a classification and the user can access their image again in an area of the website known as “My Galaxy”. However, images may only be classified once.

Example of raw user drawings and reduced, cleaned result using a sample MWP image. A GLIMPSE-only colour sam- ple is included to illustrate the dierences in the appearance of images inspected by CP06 and the MWP users.
When identifying galactic bubbles, the user creates a circle around the area which can be scaled to size and stretched into an elliptical configuration. Initially as the object is identified and marked, the user can control the position and size of the bubble. Once annotated the parameters can be edited, such as the ellipticity, annular thickness and rotation. The program even allows for regions where no obvious emission is present, such as a broken or partial bubble. This allows the user to match the bubbles they find in individual images to achieve an accurate representation You can even mark a favorite or interesting configuration as well!

“In order to assist in the data-reduction process, users are given scores according to how experienced they are at drawing bubbles. We treat the first 10 bubbles a user draws as practice drawings and these are not included in the final reduction. Users begin with a score of 0 and are given scores according to the number of precision bubbles they have drawn.” explains the team. “Precision bubbles are those drawn using the full tool set, meaning they have to have adjusted the ellipticity, the thickness and the rotation. This is done to ensure that users’ scores reflect their ability to draw bubbles well. While only precision bubbles are used to score volunteers, all bubbles drawn as included in the data reduction. The scores are used as weights when averaging the bubble drawings to produce the catalogue.”

Now it’s time to combine all that data. As of October of last year, the program has created a database of 520,120 user-drawn bubbles. The information is then sorted out and processed – with many inclusions left for further investigation. However, not all bubbles make the cut. When it comes to this project, only bubbles that have been identified fifty times or more are included into the catalog. What remains is a “clean bubble” – one that has been verified by at least five users and picked out at least 10% of the time by the volunteers when displayed.

“It is not known how many bubbles exist in the Galaxy, hence it is impossible to quantify the completeness of the MWP catalogue. There will be bubbles that are either not visible in the data used on the MWP, or that are not seen as bubbles.” says the team. “Distant bubbles may be obscured by foreground extinction. Faint bubbles may be masked by bright Galactic background emission or confused with brighter nebular structures. Fragmented or highly distorted bubbles present at high inclination angles may not appear as bubbles to the observer.”

Error measurements for MWP bubble MWP1G309059+01661. This bubble has a hit rate of 0.437, and a dispersion of 1.61'. Top gures show reduced and raw bubble drawings. Bottom figures show dispersions in measurements of position and size.
But don’t let it burst your bubble. This citizen science approach is an excellent idea from the the standpoint of observer objectivity and the final, reduced catalogue contains 5,106 visually identified bubbles. Of these, they are divided into a catalogue of 3,744 large bubbles identified by users as ellipses, and a catalogue of 1,362 small bubbles annotated by users at the highest zoom level images in the MWP.

And that’s not all… “In addition to the reduced bubble catalogue, a crowd sourced `heat map’ of bubble drawings has also been produced. The MWP `heat maps’ allow the bubble drawings to be explored without them needing to be reduced to elliptical annuli. Rather, the `heat maps’ allow contours of overlapping classifications to be drawn over regions of the Galactic plane reflecting levels of agreement between independent classifiers. In most cases the structures outlined in these maps are photo-dissociation regions traced by 8 um emission, but more fundamentally they are regions that multiple volunteers agree reflect the rims of bubbles.”

Yep. They are bubbles alright. Bubble produced around huge stars when an HII region is hollowed out by thermal overpressure, stellar winds, radiation pressure or a combination of them all. This impacts the surrounding, cold interstellar medium and creates a visible shell – or bubble. These regions serve as perfect observation points “to test theories of sequential, massive star formation triggered by massive star winds and radiation pressure” and to keep us forever fascinated…

And forever studying bubbles.

Original Story Source: The Milky Way Project First Data Release: A Bubblier Galactic Disk. For Further Reading: The Milky Way Project Zooniverse Blog.

Students Discover Millisecond Pulsar, Help in the Search for Gravitational Waves

Using an array of millisecond pulsars, astronomers can detect tiny changes in the pulse arrival times in order to detect the influence of gravitational waves. Credit: NRAO

[/caption]

A special project to search for pulsars has bagged the first student discovery of a millisecond pulsar – a super-fast spinning star, and this one rotates about 324 times per second. The Pulsar Search Collaboratory (PSC) has students analyzing real data from the National Radio Astronomy Observatory’s (NRAO) Robert C. Byrd Green Bank Telescope (GBT) to find pulsars. Astronomers involved with the project said the discovery could help detect elusive ripples in spacetime known as gravitational waves.

“Gravitational waves are ripples in the fabric of spacetime predicted by Einstein’s theory of General Relativity,” said Dr. Maura McLaughlin, from West Virginia University. “We have very good proof for their existence but, despite Einstein’s prediction back in the early 1900s, they have never been detected.”

Four other pulsars have been discovered by high school students participating in this project.

Pulsar hunters Sydney Dydiw of Trinity High School, Emily Phan of George C. Marshall High School, Anne Agee of Roanoke Valley Governor's School, and Jessica Pal of Rowan County High School. Not pictured: Max Sterling of Langley High School. Credit: NRAO

“When you discover a pulsar, you feel like you’re walking on air! It is the best experience you can ever have,” said student co-discoverer Jessica Pal of Rowan County High School in Kentucky. “You get to meet astronomers and talk to them about your experience. I still can’t believe I found a pulsar. It is wonderful to know that there is something out there in space that you discovered.”

The other student involved in the discovery was Emily Phan of George C. Marshall High School in Virginia, who along with Pal found the millisecond pulsar on January 17, 2012. It was later confirmed by Max Sterling of Langley High School, Sydney Dydiw of Trinity High School, and Anne Agee of Roanoke Valley Governor’s School, all in Virginia.

“I am considering pursuing astronomy as a career choice,” said Agee. “The Pulsar Search Collaboratory has opened my eyes to how fun astronomy can be!”

Once the pulsar candidate was reported to NRAO, a followup observing session was scheduled on the giant, 17-million-pound telescope. On January 24, 2012, observations confirmed that the pulsar was real.

Pulsars are spinning neutron stars that sling “lighthouse beams” of radio waves around as they rotate. A neutron star is what is left after a massive star explodes at the end of its “normal” life. With no nuclear fuel left to produce energy to offset the stellar remnant’s weight, its material is compressed to extreme densities. The pressure squeezes together most of its protons and electrons to form neutrons; hence, the name “neutron star.” One tablespoon of material from a pulsar would weigh 10 million tons.

On January 24, 2012, observations with the Green Bank Telescope at 800 MHz confirmed that the signal was astronomical and zeroed in on its position. Pulsars are brighter at lower frequencies (like 350 MHz, above) than at higher frequencies, and so the confirmation plot is noisier than the original data. Since this pulsar spins so fast, it may be used as part of the pulsar timing array used to detect gravitational waves. Courtesy NRAO.

The object that the students discovered is a special class of pulsars called millisecond pulsars, which are the fastest-spinning neutron stars. They are highly stable and keep time more accurately than atomic clocks.

Astronomers don’t know much about them, however. But because of their stability, these pulsars may someday allow astronomers to detect gravitational waves.

Millisecond pulsars, however, could hold the key to that discovery. Like buoys bobbing on the ocean, pulsars can be perturbed by gravitational waves.

“Gravitational waves are invisible,” said McLaughlin. “But by timing pulsars distributed across the sky, we may be able to detect very small changes in pulse arrival times due to the influence of these waves.”

Millisecond pulsars are generally older pulsars that have been “spun up” by stealing mass from companion stars, but much is left to discover about their formation.

“This latest discovery will help us understand the genesis of millisecond pulsars,” said Dr. Duncan Lorimer, who is also part of the project. “It’s a very exciting time to be finding pulsars!”

Robert C. Byrd Green Bank Telescope CREDIT: NRAO/AUI/NSF

The PSC is a joint project of the National Radio Astronomy Observatory and West Virginia University, funded by a grant from the National Science Foundation. The PSC includes training for teachers and student leaders, and provides parcels of data from the GBT to student teams. The project involves teachers and students in helping astronomers analyze data from the GBT.

Approximately 300 hours of the observing data were reserved for analysis by student teams. These students have been working with about 500 other students across the country. The responsibility for the work, and for the discoveries, is theirs. They are trained by astronomers and by their teachers to distinguish between pulsars and noise.

The PSC will continue through the 2012-2013 school year. Teachers interested in participating in the program can learn more at this link. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

CosmoQuest: Taking Citizen Science to the Next Level

“X” marks the spot for a new place for Citizen Science on the web. It’s called CosmoQuest and the collaborators of this new website invite you to come visit and do more than just click your mouse. Besides contributing to real science for NASA space missions, there are also places to learn, converse, hang out and socialize.

“We’re building a community that recreates an academic and research facility,” said Pamela Gay, from Southern Illinois University, Edwardsville, who is familiar to listeners of Astronomy Cast and 365 Days of Astronomy, and readers of her blog StarStryder. “We’ll be doing open science in an open-source way.”

Universe Today is one of the partners for CosmoQuest, along with Phil Plait from Bad Astronomy and the BAUT Forum (Bad Astronomy Universe Today forum) that Fraser Cain and Phil created for online discussion.

“Fraser and Phil successfully built a community within the BAUT Forum, and we see many of the same people there that are subscribers to our podcasts,” said Pamela. “One of the ideas behind CosmoQuest was to see if we could take this community of people that are interested in content and transform them into a community of people who are not just reading about or listening to astronomy and commenting on our feeds, but are also actively engaged in doing astronomy and science and want to learn more.”

Our readers have probably noticed –and hopefully participated in or watched — the new Weekly Space Hangouts that cover the news of the week, and the live telescope feeds that Fraser has been doing with amateur astronomers from around the world. This is all stems from CosmoQuest, and the CosmoQuest website will be the place where you can find all the feeds for the Hangouts and livestream star parties, and soon you’ll be able to sign up to get email notifications of these upcoming events. There will also be podcast feeds, a blog, an events calendar, and a forum. Later, there will be free (and premium) online classes, lectures, and other ways to participate and learn more about astronomy.

“We’ve got amateur astronomers out there who are doing amazing observations with their telescopes,” Fraser said. “We’ll be able to share tips and observing techniques, as well as exposing more people to the night sky. There will also be talks by scientists and experts in the field. In a way, this will be a way for those interested in astronomy to participate and learn without having to pay $1,000 a credit to get an advanced degree.”

But Citizen Science is the major part of CosmoQuest. “We know that the general public who are interested in science can contribute to science in meaningful ways,” said Pamela. “We’re building tools to bring researchers together with the public.”

CosmoQuest’s first project, which is currently in beta, is called Moon Mappers, which uses data from the Lunar Reconnaissance Orbiter.

Screenshot from the Moon Mappers tutorial

“Right now in beta, we have full functionality of two interface tasks,” said Stuart Robbins from the University of Colorado Boulder, a co-lead for the Moon Mappers science team. “There are ‘Simply Craters’ and ‘Man vs. Machine.’ In the former, users are asked to draw a circle to trace out a crater. They click in the center of the crater, drag outwards, and release. They can also flag features that they think are interesting to point out to the science team. Man vs. Machine is the same thing, except I’ve run an automated crater detection algorithm to find craters in the image already. We ask users to correct ones it got wrong, remove ones it marked as craters that aren’t, and add craters it missed. We’re trying to study a few things with that interface, including whether it saves time and how we can improve our algorithms.”

The goal of Moon Mappers is to find the most effective and accurate way to map the Moon.

“Do we have people do it all by themselves? Do we have people modify the outputs of crater-finding algorithms (which we know are only accurate to 80% or better)? Under what lighting conditions are both humans and software most accurate in what they do?” Pamela said. “We’re looking at how we can most effectively map the Moon as quickly as possible through a combination of humans and computers using NASA imagery from LRO.”

In beta, they want to find any problems with the interface.

“What we really need are people who don’t know the project to come in and actually use it and point out what we may have missed in terms of functionality, bugs, or other things,” said Stuart. “For example, when we first went live on January 9, there was a user in the Forum discussion, Justin (“Briliu”) who made several interface change suggestions. We’ve made them all.”

They also want to make sure that the tutorials to train the Citizen Scientists works well, which will help in creating future programs, which will include data from the Dawn mission, MESSENGER, and the Hubble Space Telescope.

Pamela and Stuart both have ample experience in leading Citizen Science projects, as Pamela has been with the Zooniverse project for several years, specifically Moon Zoo, as has Stuart.

“One of the advantages of Moon Mappers is that because we are a much smaller and more open community we are willing to say yes to almost anything that we have the ability to construct,” said Pamela. “One of our biggest differences from Zooniverse is our intent to go open source with all of our code. This means that in those instances when we can’t help someone, we can say. ‘here is our code, we’ll help you get started.'”

CosmoQuest has already posted the code for their Google Hangout On Air + Twitter social media mashup.

Pamela added that CosmoQuest will differentiate itself by stressing community-building and learning.

Community partners for CosmoQuest include The Planetary Society, Astronomers Without Borders, the Meta Institute for Computational Astrophysics and educational partners are the Ward Bleecher Planetarium, Swinburne Astronomy Online and the Galileo Teacher Training Program.

Check out CosmoQuest and Moon Mappers.

Citizen Science: GLOBE at Night

Image Credit: GLOBE at Night/NOAO

[/caption]Are you a fan of Citizen Science? Do you enjoy participating in projects that help researchers and possibly the environment?

GLOBE at Night is one such program! By taking naked-eye observations of the night sky in your area, you can help a world-wide effort to track the effects of light pollution.

Here’s all the info you need in order to participate in GLOBE at Night during 2012.

For starters, what is GLOBE at Night?

The GLOBE at Night program is an international citizen-science campaign designed to raise public awareness of the impact of light pollution on our night skies. GLOBE at Night aims to raise awareness by inviting citizen-scientists to measure their night sky brightness and submit their observations to a website from a computer or smart phone.

Light pollution not only threatens our “right to starlight”, but also affects energy consumption, wildlife and health. For the past six years, the GLOBE at Night campaign has been involving people in 115 countries.

Participating in GLOBE at Night requires only five easy steps:

1) Find your latitude and longitude.

2) Find Orion, Leo or Crux by going outside more than an hour after sunset (about 8-10pm local time).

3) Match your nighttime sky to one of the provided magnitude charts.

4) Report your observation.

5) Compare your observation to thousands around the world.

Map of 2011 GLOBE at Night participation. Image Credit: GLOBE at Night / NOAO

You can also use the new web application data submission process. The GLOBE at Night website is easy to use, comprehensive and holds an abundance of background information. The database is usable for comparisons with a variety of other databases, like how light pollution affects the foraging habits of bats.

If you’d like to learn more about GLOBE at Night, visit: http://www.globeatnight.org/ , or the 365 Days of Astronomy Podcast: GLOBE at Night Kickoff: Seeing the Light.

British TV Audience Discovers Potential New Planet

Planet Holmes Credit: BBC

[/caption]

A public “mass participation” push initiated on a UK television program to find planets beyond our Solar System has had an immediate result! On Monday, January 16, 2012 “BBC Stargazing LIVE” began its first of three nights of television programs live from Jodrell Bank Observatory in the UK. The series was hosted by Professor Brian Cox, comedian Dara O’Briain along with a number of other well known TV personalities, astronomers and scientists. There was even a guest appearance via satellite link from Captain Gene Cernan, the last man on the Moon.

As well as the main TV program, there were numerous local events across the UK and the viewers could “mass participate” in activities such as looking for extra solar planets with the citizen science project, Planethunters.org.

The website hosts data gathered by NASA’s Kepler space telescope, and asks volunteers to sift the information for anything unusual that might have been missed in a computer search. People are especially adept at seeing things that computers do not and the BBC Stargazing Live event was a golden opportunity to get many people looking. During the event, over a million classifications were made and 34 candidate planets found on the website in 48 hours.

On the last show of the series on Wednesday 18th January it was announced, that in particular, one planet candidate looks extremely promising, as it has been identified multiple times by PlanetHunter participants.

The planet is circling the star SPH10066540 and is described as being similar in size to Neptune, circles its parent every 90 days and is about a similar distance from its parent star as Mercury is from our Sun. It could be described as a hot Neptune.

Chris Holmes from Peterborough UK and Lee Threapleton also from the UK found the planet by searching through time-lapsed images of stars looking for the periodic dips in brightness that result every time a planet passes in front of (transits) one of those stars.

Credit: planethunters.org

A transit has to be observed several times before a planet will be confirmed. For the orange dwarf star SPH10066540, five such events have now been seen in the Kepler data making it a strong candidate for an extra solar planet.

“There’s more work to be done to confirm whether these candidates are true planets,” wrote the PlanetHunters team on their blog, “in particular, we need to talk to our friends on the Kepler team – but we’re on our way.”

The NASA Kepler space telescope, launched in 2009, has been searching a part of space thought to have many stars similar to our own Sun.

You can try and find a new planet too by visiting planethunters.org it is incredibly simple and easy to do and requires no previous knowledge of astronomy.

How many more planets will be discovered?

International Measure The Moon Night – December 10, 2011

Are you planning on watching the lunar eclipse on Saturday, December 10? Would you like to try your hand at doing something new and unusual, like measuring the Moon? Then join the The Classroom Astronomer (TCA) magazine effort by using time-honored techniques – with a modern twist! Step inside and we’ll tell you where to get the information on how it’s done…

During the total lunar eclipse, viewers will be participating by observing the Moon’s location in the sky and its path through Earth’s shadow. These methods, known as the “Shadow Transit Method” and the “Lunar Parallax Method” are techniques that have been used throughout astronomical history.

“The Shadow technique can be done anyplace where the Moon can be watched through the beginning partial, total and end partial phases of the eclipse. It can be recorded by drawing or photography.” says MTM. “The Parallax technique has to be done with two observers sufficiently far apart (we estimate at least 2000 miles (3200 kilometers). It must be recorded with photography and the photographs have to be taken at the exact same time, with a field of view wide enough (4-8 degrees) such that the neighboring stars can be recorded at the same time on both photographs. A comparison of photographs through overlay procedures will show the shift of the stars (or Moon) as seen from one side of Earth to the other. The larger the shift, the closer the Moon.”

The Classroom Astronomer has created a website – MeasureTheMoon.org to help generate interest – for everyone from general observers to classrooms. Think of what a great activity this would make for your public outreach event!

When it comes to the Shadow Transit Method, the website has a downloadable template with lunar illustrations for hand plots of the shadow over the Moon’s face and a timeline sheet for putting those drawings and cut-out of the template into the proper position. A table to calculate the Moon’s distance and size from the resulting plot is also online. More information on the MeasureTheMoon.org website includes a map that shows where on Earth you need to be to use both methods. When the total lunar eclipse has ended, the website will open a venue where you can upload your photos, along with your Moon distance and diameter observations.

Have fun!!

Information provided by Measure The Moon.