NASA has a Pretty Big Checklist for Boeing to Fix on Starliner

In 2014, NASA contracted two major aerospace companies (Boeing and SpaceX) to help them restore domestic launch capability to the United States. As part of the Commercial Crew Program (CCE), Boeing and SpaceX developed the CST-100 Starliner the Crew Dragon spacecraft, respectively. But whereas the Crew Dragon finished testing and even carried astronauts to the ISS, the Starliner met with some problems.

During its first uncrewed test flight – Orbital Flight Test-1 (OFT-1) – in December 2019, the Starliner experienced some failures that prevented it from docking with the ISS. After a thorough investigation, the joint NASA-Boeing Independent Review team has completed its final assessment and identified 80 areas where corrections need to be made before the Starliner can conduct another orbital flight test.

Continue reading “NASA has a Pretty Big Checklist for Boeing to Fix on Starliner”

NASA tells Boeing to Make 61 Corrective Actions to Starliner Before the Program can Continue

With the retirement of the Space Shuttle in 2011, NASA has become dependent on its Russian counterparts to send and return astronauts to the International Space Station (ISS). Hoping to restore domestic launch capability to American soil, NASA has contracted with aerospace developers like SpaceX and Boeing to develop crew-capable spacecraft, as part of their Commercial Crew Program (CCP).

After years of development, Boeing managed to get their CST-100 Starliner ready for its first uncrewed test flight on December 20th, 2019. Unfortunately, a hiccup occurred during the mission that prevented the spacecraft docking with the ISS. After an independent review of the mission, NASA and Boeing have determined that 61 corrective actions need to be taken before the Starliner can fly again.

Continue reading “NASA tells Boeing to Make 61 Corrective Actions to Starliner Before the Program can Continue”

A Television Satellite Might be About to Explode

On Friday (Jan. 19th), authorities at the Federal Communications Commission (FCC) announced that they had granted permission to cable tv provider DirecTV to begin the process of deorbiting their Spaceway-1 (F1) satellite. This was necessary ever since DirecTV detected a “major anomaly” with the satellite’s batteries which increased the risk of an explosion if its orbit remained unchanged.

Continue reading “A Television Satellite Might be About to Explode”

Finally! We get to See a View From Inside Boeing’s Starliner During its First Flight

In 2014, Boeing was awarded a contract through NASA’s Commercial Crew Development (CCDev) program to provide commercial launch services to the International Space Station (ISS). To this end, they have been busy developing the CST-100 Starliner, a space capsule that will be able to deliver cargo and crews of up to 7 astronauts to the ISS. On December 20th, 2019, the Starliner passed a major milestone when it conducted an uncrewed test.

While an error prevented this Starliner (designated Calypso) from docking with the ISS as planned, the space capsule still managed to make it to space and land safely near White Sands, New Mexico. This makes it the first crew capsule to touchdown on land in the United States. To celebrate this accomplishment, Boeing recently released a highlight reel of footage taken by cameras inside the Calypso during the flight test.

Continue reading “Finally! We get to See a View From Inside Boeing’s Starliner During its First Flight”

Dream Chaser Mini-Shuttle to Fly ISS Resupply Missions on ULA Atlas V

Artist’s concept of the Sierra Nevada Corporation Dream Chaser spacecraft launching atop the United Launch Alliance Atlas V rocket in the 552 configuration on cargo missions to the International Space Station. Credit: ULA

The first two missions of the unmanned Dream Chaser mini-shuttle carrying critical cargo to the International Space Station (ISS) for NASA will fly on the most powerful version of the Atlas V rocket and start as soon as 2020, announced Sierra Nevada Corporation (SNC) and United Launch Alliance (ULA).

“We have selected United Launch Alliance’s Atlas V rocket to launch our first two Dream Chaser® spacecraft cargo missions,” said SNC of Sparks, Nevada.

Dream Chaser will launch atop the commercial Atlas V in its most powerful configuration, dubbed Atlas V 552, with five strap on solid rocket motors and a dual engine Centaur upper stage while protectively tucked inside a five meter diameter payload fairing – with wings folded.

Blast off of Dream Chaser loaded with over 5500 kilograms of cargo mass for the space station crews will take place from ULA’s seaside Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

Sierra Nevada Corporation’s Dream Chaser spacecraft docks at the International Space Station.
Credits: Sierra Nevada Corporation

The unique lifting body design enables runway landings for Dream Chaser, similar to the NASA’s Space Shuttle at the Shuttle Landing Facility runway at NASA’s Kennedy Space Center in Florida.

The ULA Atlas V enjoys a 100% success rate. It has also been chosen by Boeing to ferry crews on piloted missions of their CST-100 Starliner astronaut space taxi to the ISS and back. The Centaur upper stage will be equipped with two RL-10 engines for both Dream Chaser and Starliner flights.

“SNC recognizes the proven reliability of the Atlas V rocket and its availability and schedule performance makes it the right choice for the first two flights of the Dream Chaser,” said Mark Sirangelo, corporate vice president of SNC’s Space Systems business area, in a statement.

“Humbled and honored by your trust in us,” tweeted ULA CEO Tory Bruno following the announcement.

Liftoff of the maiden pair of Dream Chaser cargo missions to the ISS are expected in 2020 and 2021 under the Commercial Resupply Services 2 (CRS2) contract with NASA.

Rendering of Launch of SNC’s Dream Chaser Cargo System Aboard an Atlas V Rocket. Credit: SNC

“ULA is pleased to partner with Sierra Nevada Corporation to launch its Dream Chaser cargo system to the International Space Station in less than three years,” said Gary Wentz, ULA vice president of Human and Commercial Systems.

“We recognize the importance of on time and reliable transportation of crew and cargo to Station and are honored the Atlas V was selected to continue to launch cargo resupply missions for NASA.”

By utilizing the most powerful variant of ULA’s Atlas V, Dream Chaser will be capable of transporting over 5,500 kilograms (12,000 pounds) of pressurized and unpressurized cargo mass – including science experiments, research gear, spare part, crew supplies, food, water, clothing and more per ISS mission.

“In addition, a significant amount of cargo, almost 2,000 kilograms is directly returned from the ISS to a gentle runway landing at a pinpoint location,” according to SNC.

“Dream Chaser’s all non-toxic systems design allows personnel to simply walk up to the vehicle after landing, providing immediate access to time-critical science as soon as the wheels stop.”

“ULA is an important player in the market and we appreciate their history and continued contributions to space flights and are pleased to support the aerospace community in Colorado and Alabama,” added Sirangelo.

Under the NASA CRS-2 contract awarded in 2016, Dream Chaser becomes the third ISS resupply provider, joining the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California.

NASA decided to plus up the number of ISS commercial cargo providers from two to three for the critical task of ensuring the regular delivery of critical science, crew supplies, provisions, spare parts and assorted gear to the multinational crews living and working aboard the massive orbiting outpost.

NASA’s CRS-2 contracts run from 2019 through 2024 and specify six cargo missions for each of the three commercial providers.

By adding a new third provider, NASA simultaneously gains the benefit of additional capability and flexibility and also spreads out the risk.

Both SpaceX and Orbital ATK suffered catastrophic launch failures during ISS resupply missions, in June 2015 and October 2014 respectively, from which both firms have recovered.

Orbital ATK and SpaceX both successfully launched ISS cargo missions this year. Indeed a trio of Orbital ATK Cygnus spacecraft have already launched on the Atlas V, including the OA-7 resupply mission in April 2017.

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX has already launched a pair of resupply missions this year on the CRS-10 and CRS-11 flights in February and June 2017.

Unlike the Cygnus which burns up on reentry and Dragon which lands via parachutes, the reusable Dream Chaser is capable of low-g reentry and runway landings. This is very beneficial for sensitive scientific experiments and allows much quicker access by researchers to time critical cargo.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dream Chaser has been under development for more than 10 years. It was originally developed as a manned vehicle and a contender for NASA’s commercial crew vehicles. When SNC lost the bid to Boeing and SpaceX in 2014, the company opted to develop this unmanned variant instead.

A full scale test version of the original Dream Chaser is currently undergoing ground tests at NASA’s Armstrong Flight Research Center in California. Approach and landing tests are planned for this fall.

Other current cargo providers to the ISS include the Russian Progress and Japanese HTV vessels.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Sierra Nevada Dream Chaser engineering test article in flight during prior captive-carry tests. Credit: NASA

Clean Room Tour with NASA’s Next Gen Tracking Data Relay Satellite TDRS-M, Closeout Incident Under Review – Photos

Inside the Astrotech payload processing facility in Titusville, FL,NASA’s massive, insect like Tracking and Data Relay Satellite, or TDRS-M, spacecraft is undergoing preflight processing during media visit on 13 July 2017. TDRS-M will transmit critical science data gathered by the ISS, Hubble and numerous NASA Earth science missions. It is being prepared for encapsulation inside its payload fairing prior to being transported to Launch Complex 41 at Cape Canaveral Air Force Station for launch on a United Launch Alliance (ULA) Atlas V rocket on 3 August 2017. Credit: Ken Kremer/kenkremer.com

ASTROTECH SPACE OPERATIONS/KENNEDY SPACE CENTER, FL – The last of NASA’s next generation Tracking and Data Relay Satellites (TRDS) designed to relay critical science data and research observations gathered by the International Space Station (ISS), Hubble and dozens of Earth-orbiting Earth science missions is undergoing final prelaunch clean room preparations on the Florida Space Coast while targeting an early August launch – even as the agency reviews the scheduling impact of a weekend “closeout incident” that “damaged” a key component.

Liftoff of NASA’s $408 million eerily insectoid-looking TDRS-M science relay comsat atop a United Launch Alliance (ULA) Atlas V rocket currently scheduled for August 3 may be in doubt following a July 14 work related incident causing damage to the satellite’s Omni S-band antenna while inside the Astrotech Space Operations facility in Titusville, Florida.

“The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities,” NASA said in an updated status statement provided to Universe Today earlier today, July 16. NASA did not provide any further details when asked.

Everything had been perfectly on track as of Thursday, July 13 as Universe Today participated in an up close media tour and briefing about the massive probe inside the clean room processing facility at Astrotech Space Operations in Titusville, Fl.

On July 13, technicians were busily working to complete final spacecraft processing activities before its encapsulation inside the nose cone of the ULA Atlas V rocket she will ride to space, planned for the next day on July 14. The satellite and pair of payload fairings were stacked in separate high bays at Astrotech on July 13.

Alas the unspecified “damage” to the TDRS-M Omni S-band antenna unfortunately took place on July 14.

Up close clean room visit with NASA’s newest science data relay comsat – Tracking and Data Relay Satellite-M (TDRS-M) inside the Astrotech payload processing facility high bay in Titusville, FL. Two gigantic fold out antennae’s, plus space to ground antenna dish visible inside the ‘cicada like cocoon’ with solar arrays below. Omni S-band antenna at top. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M was built by Boeing and engineers are now analyzing the damage in a team effort with NASA. However it’s not known exactly during which closeout activity or by whom the damage occurred.

ULA CEO Tory Bruno tweeted that his company is not responsible and referred all questions to NASA. This may indicate that the antennae was not damaged during the encapsulation procedures inside the ULA payload fairing halves.

“NASA and Boeing are reviewing an incident that occurred with the Tracking and Data Relay Satellite (TDRS-M) on July 14 at Astrotech Space Operations in Titusville, Florida. The satellite’s Omni S-band antenna was damaged during final spacecraft closeout activities” stated NASA.

Up close look at the NASA TDRS-M satellite Omni S-band antenna damaged during clean room processing on July 14, 2017. Launch on ULA Atlas V is slated for Aug. 2017. Credit: Julian Leek

TDRS-M looks like a giant insect – or a fish depending on your point of view. It was folded into flight configuration for encapsulation in the clean room and the huge pair of single access antennas resembled a cocoon or a cicada. The 15 foot diameter single access antennas are large parabolic-style antennas and are mechanically steerable.

What does TDRS do? Why is it important? How does it operate?

“The existing Space Network of satellites like TDRS provide constant communications from other NASA satellites like the ISS or Earth observing satellites like Aura, Aqua, Landsat that have high bandwidth data that needs to be transmitted to the ground,” TDRS Deputy Project Manager Robert Buchanan explained to Universe Today during an interview in the Astrotech clean room.

“TRDS tracks those satellites using antennas that articulate. Those user satellites send the data to TDRS, like TDRS-M we see here and nine other TDRS satellites on orbit now tracking those satellites.”

“That data acquired is then transmitted to a ground station complex at White Sands, New Mexico. Then the data is sent to wherever those user satellites want the data to be sent is needed, such as a science data ops center or analysis center.”

Once launched and deployed in space they will “take about 30 to 40 days to fully unfurl,” Buchanan told me in the Astrotech clean room.

Astrotech is located just a few miles down the road from NASA’s Kennedy Space Center and the KSC Visitor Complex housing the finest exhibits of numerous spaceships, hardware items and space artifacts.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

At this time, the TDRS-M website countdown clock is still ticking down towards a ULA Atlas V blastoff on August 3 at 9:02 a.m. EDT (1302 GMT) from Space Launch Complex 41 (SLC-41) on Cape Canaveral Air Force Station, for a late breakfast delight.

The Aug. 3 launch window spans 40 minutes from 9:02 to 9:42 a.m. EDT.

Whether or not the launch date will change depends on the results of the review of the spacecraft’s health by NASA and Boeing. Several other satellites are also competing for launch slots in August.

“The mission team is currently assessing flight acceptance and schedule. TDRS-M is planned to launch Aug. 3, 2017, on an United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Air Force Station in Florida,” NASA explained.

NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft will be encapsulated inside these two protective payload fairing halves inside the Astrotech payload processing facility high bay in Titusville, FL. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

TDRS-M, spacecraft, which stands for Tracking and Data Relay Satellite – M is NASA’s new and advanced science data relay communications satellite that will transmit research measurements and analysis gathered by the astronaut crews and instruments flying abroad the International Space Station (ISS), Hubble Space Telescope and over 35 NASA Earth science missions including MMS, GPM, Aura, Aqua, Landsat, Jason 2 and 3 and more.

The TDRS constellation orbits 22,300 miles above Earth and provide near-constant communication links between the ground and the orbiting satellites.

Preflight clean room processing inside the Astrotech payload processing facility preparing NASA’s Tracking and Data Relay Satellite, or TDRS-M, spacecraft for launch on ULA Atlas V in Aug. 2017. Credit: Julian Leek

TRDS-M will have S-, Ku- and Ka-band capabilities. Ka has the capability to transmit as much as six-gigabytes of data per minute. That’s the equivalent of downloading almost 14,000 songs per minute says NASA.

The TDRS program is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

TDRS-M is the third satellite in the third series of NASA’s American’s most powerful and most advanced Tracking and Data Relay Satellites. It is designed to last for a 15 year orbital lifetime.

The first TDRS satellite was deployed from the Space Shuttle Challenger in 1983 as TDRS-A.

TDRS-M was built by prime contractor Boeing in El Segundo, California and is the third of a three satellite series – comprising TDRS -K, L, and M. They are based on the Boeing 601 series satellite bus and will be keep the TDRS satellite system operational through the 2020s.

TDSR-K and TDRS-L were launched in 2013 and 2014.

The Tracking and Data Relay Satellite project is managed at NASA’s Goddard Space Flight Center.

TDRS-M was built as a follow on and replacement satellite necessary to maintain and expand NASA’s Space Network, according to a NASA description.

The gigantic satellite is about as long as two school buses and measures 21 meters in length by 13.1 meters wide.

It has a dry mass of 1800 kg (4000 lbs) and a fueled mass of 3,454 kilogram (7,615 lb) at launch.

Tracking and Data Relay Satellite artwork explains how the TDRS constellation enables continuous, global communications coverage for near-Earth spacecraft. Credit: NASA

TDRS-M will blastoff on a ULA Atlas V in the baseline 401 configuration, with no augmentation of solid rocket boosters on the first stage. The payload fairing is 4 meters (13.1 feet) in diameter and the upper stage is powered by a single-engine Centaur.

TDRS-M will be launched to a Geostationary orbit some 22,300 miles (35,800 km) above Earth.

“The final orbital location for TDRS-M has not yet been determined,” Buchanen told me.

The Atlas V booster is being assembled inside the Vertical Integration Facility (VIF) at SLC-41 and will be rolled out to the launch pad the day before liftoff with the TDRS-M science relay comsat comfortably encapsulated inside the nose cone.

NASA/contractor team poses with the Boeing built and to be ULA launched Tracking and Data Relay Satellite-M inside the inside the Astrotech payload processing facility clean room high bay in Titusville, FL, on July 13, 2017. Launch on ULA Atlas V slated for August 2017 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Carefully secured inside its shipping container, the TDRS-M satellite was transported on June 23 by a US Air Force cargo aircraft from Boeing’s El Segundo, California facility to Space Coast Regional Airport in Titusville, Florida, for preflight processing at Astrotech.

Watch for Ken’s onsite TDRS-M and space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

KSC Director/Shuttle Commander Robert Cabana Talks NASA 2018 Budget- ‘Stay on the path’ with SLS, Orion, Commercial Crew: One-on-One Interview

NASA’s Space Launch System (SLS) blasts off from launch pad 39B at the Kennedy Space Center in this artist rendering showing a view of the liftoff of the Block 1 70-metric-ton (77-ton) crew vehicle configuration. Credit: NASA/MSFC

KENNEDY SPACE CENTER VISITOR COMPLEX, FL – Following up last week’s announcement of NASA’s proposed Fiscal Year 2018 top line budget of $19.1 Billion by the Trump Administration, Universe Today spoke to NASA’ s Kennedy Space Center (KSC) Director Robert Cabana to get his perspective on the new budget and what it means for NASA and KSC; “Stay on the path!” – with SLS, Orion, ISS and Commercial Crew was his message in a nutshell.

The highlights of NASA’s $19.1 Billion FY 2018 budget request were outlined last week by NASA Acting Administrator Robert Lightfoot during a ‘State of NASA’ speech to agency employees held at NASA HQ, Washington, D.C. and broadcast to the public live on NASA TV on May 23.

In order to get a better idea of the implications of the 2018 NASA budget proposal for KSC, I spoke one-on-one with Robert Cabana – one of NASA’s top officials, who currently serves as Director of the Kennedy Space Center (KSC) as well as being a former astronaut and Space Shuttle Commander. Cabana is a veteran of four space shuttle missions.

How did NASA and KSC fare with the newly announced 2018 Budget?

“We at KSC and NASA as a whole did very well with the 2018 budget,” KSC Director Robert Cabana explained during an interview with Universe Today by the Rocket Garden at the Kennedy Space Center Visitor Complex (KSCVC) in Florida.

“I think it really solidifies that the President has confidence in us, on the path that we are on,” Cabana noted while attending a student robotics competition at KSCVC sponsored by NASA.

“With only a 1 percent cut – when you look at what other agency’s got cut – this budget allows us to stay on the path that we are on.”

Trump cut NASA’s 2018 budget request by $0.5 Billion compared to the recently enacted FY 2017 budget of $19.6 Billion approved by the US Congress and signed by the President.

Other Federal science agency’s also critically vital to the health of US scientific research such as the NIH, the NSF, the EPA, DOE and NIST suffered terrible double digit slashes of 10 to 20% or more.

KSC is the focal point for NASA’s human spaceflight programs currently under intense development by NASA – namely the Space Launch System (SLS) Mars megarocket, the Orion deep space crew capsule to be launched beyond Earth orbit (BEO) atop SLS, and the duo of Commercial Crew Program (CCP) space taxis being manufactured by Boeing and SpaceX that will ferry our astronauts to low Earth orbit (LEO) and the International Space Station (ISS).

Numerous NASA science missions also launch from the Florida Space Coast.

“At KSC the budget keeps us on a path that continues to provide a commercial crew vehicle to fly crews to the ISS in 2018,” Cabana stated.

“The budget also keeps us on track to launch SLS and Orion in 2019.”

“I think that’s really important – along with all the other stuff we are doing here at KSC.”

“From our point of view it’s a good budget. We need to press ahead and continue on with what we promised.”

Hull of the Boeing CST-100 Starliner Structural Test Article (STA)- the first Starliner to be built in the company’s modernized Commercial Crew and Cargo Processing Facility high bay at NASA’s Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

What’s ahead for commercial crew at KSC?

“We are moving forward with commercial crew,” Cabana told me.

“Within the next calendar year [2018] we are moving ahead with flying the first certification flight with crew to the ISS. So that’s test flights and by the end of the year an actual crewed flight to the ISS. I want to see that happen.”

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2018. Credit: NASA

Industry partners Boeing and SpaceX are building the private CST-100 Starliner and Crew Dragon spaceships respectively, as part of NASA’s commercial crew initiative aimed at restoring America’s human spaceflight capability to launch our astronauts aboard American spaceships on American rockets from American soil.

Commercial Crew is a public/private partnership initiative with commercial contracts valued at $4.2 Billion and signed by Boeing and SpaceX with NASA in September 2014 under the Obama Administration.

The goal of commercial crew is to end our sole reliance on the Russian Soyuz capsule for astronaut flights to the space station since the retirement of the space shuttles back in 2011 – by manufacturing indigenous rockets and human rated spaceships.

However the CCP program suffered severe budget reductions by the US Congress for several years which forced significant work stretch-outs and delays in the maiden crew launches by both companies from 2015 to 2018 – and thus forced additional payments to the Russians for Soyuz seat purchases.

Both the Boeing Starliner and SpaceX Dragon crew vehicles can carry 4 or more astronauts to the ISS. This will enable NASA to add another crew member and thereby enlarge the ISS crew from 6 to 7 permanent residents after they become operational.

Orion crew module pressure vessel for NASA’s Exploration Mission-1 (EM-1) is unveiled for the first time on Feb. 3, 2016 after arrival at the agency’s Kennedy Space Center (KSC) in Florida. It is secured for processing in a test stand called the birdcage in the high bay inside the Neil Armstrong Operations and Checkout (O&C) Building at KSC. Launch to the Moon is slated in 2018 atop the SLS rocket. Credit: Ken Kremer/kenkremer.com

Meanwhile NASA is focusing on developing the SLS heavy lift rocket and Orion crew capsule with prime contractors Boeing and Lockheed Martin in an agency wide effort to send humans on a ‘Journey to Mars’ in the 2030s.

The European Space Agency(ESA) is also partnered with NASA and providing the service module for Orion.

What’s the status of the delivery of the European Space Agency’s service module?

“The service module will be here sometime next year,” Cabana said.

He noted that the details and exact timing are yet to be determined.

The first integrated launch of SLS and Orion on the unpiloted Exploration Mission-1 (EM-1) is now slated for sometime in 2019 after NASA recently slipped the date to the right from Fall 2018.

At the request of the Trump Administration, NASA also just completed a detailed study to ascertain the feasibility of adding a crew of two NASA astronauts to the EM-1 flight and launch it by the end of 2019.

In the end, NASA officials decided to stick with the baselined plan of no crew on EM-1 for a variety of technical and safety reasons, as well as cost – as I reported here.

I asked Cabana for his insight and opinion on NASA not adding crew to Orion on the EM-1 flight.

“No we are not launching crew on the first flight [EM-1],” Cabana stated.

“With the budget that we have and what we need to do, this is the answer we got to at the end.”

“You know the crew study was still very important. It allowed us to find some things that we should still do on [EM-1], even though we are not going to launch crew on that flight.

“So we will make some further modifications that will reduce the risk even further when we do fly crew [on the next flight of EM-2].”

The newly assembled first liquid hydrogen tank, also called the qualification test article, for NASA’s new Space Launch System (SLS) heavy lift rocket lies horizontally beside the Vertical Assembly Center robotic weld machine (blue) on July 22, 2016. It was lifted out of the welder (top) after final welding was just completed at NASA’s Michoud Assembly Facility in New Orleans. Credit: Ken Kremer/kenkremer.com

So for 2017 what are the major milestone you hope to complete here at KSC for SLS and Orion?

“So for me here at the Kennedy Space Center, my goal for the end of this calendar year 2017 we will have completed all of the construction of all of the [ground systems] hardware and facilities that are necessary to process and launch the Space Launch System (SLS) and Orion,” Cabana elaborated.

‘We will still have a lot of work to do with the software for the spacecraft command and control systems and the ground systems.”

“But my goal is to have the hardware for the ground systems complete by the end of this year.”

What are those KSC facilities?

“Those facilities include the VAB [Vehicle Assembly Building] which will be complete to accept the mobile launcher in September and pad 39B will be complete in August,” Cabana said.

“The RPSF is already complete. The NPFF is already complete and we are doing testing in there. The LASF [Launch Abort System Facility] is complete – where they put the abort rocket on.”

“The Mobile Launcher will be complete from a structural point of view, with all the systems installed by the end of the year [including the umbilical’s and while room].”

Floor level view of the Mobile Launcher and enlarged exhaust hole with 380 foot-tall launch tower astronauts will ascend as their gateway for missions to the Moon, Asteroids and Mars. The ML will support NASA’s Space Launch System (SLS) and Orion spacecraft for launches from Space Launch Complex 39B the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s onsite CRS-11 mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

View of the Vehicle Assembly Building (VAB), Launch Control Center and Mobile Launcher from the KSC Launch Complex 39 Press Site. NASA is upgrading the VAB with new platforms to assemble and launch NASA’s Space Launch System rocket at the Kennedy Space Center in Florida. Credit: Ken Kremer/kenkremer.com

.……….

Learn more about the SpaceX Dragon CRS-11 resupply launch to ISS, NASA missions and more at Ken’s upcoming outreach events at Kennedy Space Center Quality Inn, Titusville, FL:

May 30/31: “SpaceX CRS-11 and CRS-10 resupply launches to the ISS, Inmarsat 5 and NRO Spysat, EchoStar 23, SLS, Orion, Commercial crew capsules from Boeing and SpaceX , Heroes and Legends at KSCVC, ULA Atlas/John Glenn Cygnus launch to ISS, SBIRS GEO 3 launch, GOES-R weather satellite launch, OSIRIS-Rex, Juno at Jupiter, InSight Mars lander, SpaceX and Orbital ATK cargo missions to the ISS, ULA Delta 4 Heavy spy satellite, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Robert Cabana, Director of NASA’s Kennedy Space Center (KSC) and former Space Shuttle Commander, and Ken Kremer/Universe Today discuss the newly proposed NASA FY2018 budget backdropped by the Rocket Garden at the Kennedy Space Center Visitor Complex, FL in May 2017. Credit: Ken Kremer/kenkremer.com