Massive Stars Have Protoplanetary Disks Too

An artist’s illustration of a circumstellar disk around a massive star. Image credit: NAOJ Click to enlarge
An international group of astronomers has used the Coronagraphic Imager for Adaptive Optics (CIAO) on the Subaru telescope in Hawai’i to obtain very sharp near-infrared polarized-light images of the birthplace of a massive proto-star known as the Becklin-Neugebauer (BN) object at a distance of 1500 light years from the Sun. The group’s images led to the discovery of a disk surrounding this newly forming star. This finding, described in detail in the September 1 issue of Nature, deepens our understanding of how massive stars form.

The research group, which includes astronomers from the Purple Mountain Observatory, China, National Astronomical Observatories of Japan, and University of Hertfordshire, UK, explored the region close to the Becklin-Neugebauer object and analyzed how infrared light is affected by dust. To do this, they took a polarized-light image of the object at a wavelength of 1.6 micrometers (the H band of infrared light). Images of the brightness of the object just show a circular distribution of light. However, an image of the light’s polarization shows a butterfly shape that reveals details that are undetectable by looking at the brightness distribution alone. To understand the environment around the star and what the butterfly shape implies, the astronomers created a computer model for comparison, along with a schematic of star formation. These models show that the butterfly shape is the signature of a disk and an outflow structure near the newborn star.

This discovery is the most concrete evidence for a disk around a massive young star and shows that massive stars like the BN object (which is about seven times the mass of the Sun) form the same way as lower-mass stars like the Sun.

There are two main theories to explain the formation of massive stars. The first states that massive stars are the results of the mergers of several low-mass stars. The second says that they are formed through gravitational collapse and mass accretion within circumstellar disks. Lower-mass stars like the Sun are most likely to have formed through the second method. The collapse-accretion theory assumes that a system has a star associated with a bipolar outflow, a circumstellar disk and an envelope, while the merger theory does not. The presence or absence of such structures can distinguish between the two formation scenarios.

Until recently, there has been little direct observational evidence in support of either theory of massive star formation. This is because, unlike lower-mass stars, newly forming massive stars are so rare and so far away from us that they have been difficult to observe. Large telescopes and adaptive optics, which greatly improve image sharpness, now make it possible to observe these objects with unprecedented clarity. High-resolution infrared polarimetry is an especially powerful tool for probing the environment hidden behind the bright glow of a massive star.

Polarization-the direction that light waves oscillate in as they stream away from an object-is an important characteristic of radiation. Sun light doesn?t have a preferred direction of oscillation, but can become polarized when scattered by Earth?s atmosphere, or after reflecting off the surface of water. A similar action occurs in a circumstellar cloud around a newborn star. The star lights up its surroundings-the circumstellar disk, the envelope and the cavity walls formed by the outflow streams. The light can travel freely within the cavity and then reflect off its walls. This reflected light becomes highly polarized. By contrast, the disk and the envelope are relatively opaque to light. This reduces the polarization of light coming from those regions.

The group?s success in detecting evidence for a disk and outflow around the BN object through high-resolution infrared polarimetry suggests that the same technique can be applied to other forming stars. This would allow astronomers to obtain a comprehensive observational description of the formation of massive stars greater than ten times the mass of the Sun.

Original Source: NAOJ News Release

Big Galaxies, Older Stars

Galaxy cluster Abell 3266. Image credit: NOAO Click to enlarge
A comprehensive survey of more than 4,000 elliptical and lenticular galaxies in 93 nearby galaxy clusters has found a curious case of galactic ?downsizing.?

Contrary to expectations, the largest, brightest galaxies in the census consist almost exclusively of very old stars, with much of their stellar populations having formed as long ago as 13 billion years. There appears to be very little recent star formation in these galaxies, nor is there strong evidence for recent ingestion of smaller, younger galaxies.

By contrast, the smaller, fainter galaxies studied by the NOAO Fundamental Plane Survey are significantly younger?their stars were formed as little as four billion years ago, according to new results from the survey team to be published in the September 10, 2005, Astrophysical Journal.

These findings are based on a sample more than five times larger than previous efforts. The results of the survey contrast sharply with conventional hierarchical model of galaxy formation and evolution, where large elliptical galaxies in the nearby universe formed by swallowing smaller galaxies with young stars; this theory predicts that, on average, the stars in the largest elliptical galaxies should be no older than those in the smallest ones.

?This sample probes the largest and richest galaxy clusters in the nearby universe, out to a distance of about a billion light-years from Earth,? says Jenica Nelan, lead author of the study. ?Our analysis shows that there is a clear relationship between mass and age in these red galaxies, meaning that the stars in the biggest, oldest galaxies that we studied formed early in the history of the Universe. On average, the smaller galaxies have one-tenth the mass of the larger ones, and are only about half their age.?

?The term ?downsizing? essentially means that when the Universe was young, the star formation activity occurred in large galaxies, but as the Universe aged, the ?action? stopped in the larger galaxies, even as it continued in smaller galaxies,? says Michael Hudson of the University of Waterloo, Ontario, Canada, principal investigator for the NOAO Fundamental Plane Survey.

The new study is based on thousands of spectra obtained by the Fundamental Plane Survey team over dozens of nights at the WIYN 3.5-meter telescope at Kitt Peak National Observatory, southwest of Tucson, AZ, and the National Science Foundation?s Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory, east of La Serena, Chile. With some painstaking work, these spectra can reveal the average age of the stars that make up a galaxy.

?Although we cannot directly see these galaxies as they were in the past, their stars are a kind of ?fossil record? that can be used to unearth their histories,? Hudson explains. ?It appears that the older galaxies are much less of a ?melting pot? than had been thought, and that their star formation activity turned off somehow while they were being put together.?

The evolutionary history of elliptical galaxies and lenticular galaxies (which have a central bulge and a disk, but no evidence of spiral arms) is not well understood. Their colors appear to be ?redder? than typical spiral galaxies. The largest ellipticals are the reddest of all, but until this work it has not been clear whether this property results primarily from being older in age, as the survey found, or from having a higher proportion of heavy chemical elements (metallicity content).

?These so-called red galaxies contain the bulk of the stellar mass in the nearby universe, but we know little about their formation and evolution,? says co-author Russell Smith of the University of Waterloo. ?It was thought that all of the red galaxies were made of stars that formed very early, and are now quite old. Our results show that while this is true for the large galaxies, the smaller ones formed their stars comparatively recently in the history of the Universe. We predict that as new surveys look deeper and hence further into the past, they should see fewer faint red galaxies?

An image of galaxy cluster Abell 3266 taken by survey team members at the Gemini South telescope as part of their follow-up work is available above.

Lead author Jenica Nelan completed this work while earning her doctorate at Dartmouth College; she is now an astronomer at Yale University.

Co-authors of this paper include Hudson and Smith of the University of Waterloo; Gary Wegner of Dartmouth College; John R. Lucey, Stephen A. W. Moore, and Stephen J. Quinney of the University of Durham, and Nicholas B. Suntzeff of NOAO?s Cerro Tololo Inter-American Observatory.

The Fundamental Plane Survey is one of 18 projects granted long-term access to observing nights at the telescope of the National Optical Astronomy Observatory (NOAO) under the NOAO Survey Program.

See here for more information:
www.noao.edu/gateway/surveys/programs.html and astro.uwaterloo.ca/~mjhudson/nfp

Original Source: NOAO News Release

Will the Universe Expand Forever?

The SuperNova/Acceleration Probe, SNAP. Image credit: Berkeley Lab Click to enlarge
What is the mysterious dark energy that’s causing the expansion of the universe to accelerate? Is it some form of Einstein’s famous cosmological constant, or is it an exotic repulsive force, dubbed “quintessence,” that could make up as much as three-quarters of the cosmos? Scientists from Lawrence Berkeley National Laboratory (Berkeley Lab) and Dartmouth College believe there is a way to find out.

In a paper to be published in Physical Review Letters, physicists Eric Linder of Berkeley Lab and Robert Caldwell of Dartmouth show that physics models of dark energy can be separated into distinct scenarios, which could be used to rule out Einstein’s cosmological constant and explain the nature of dark energy. What’s more, scientists should be able to determine which of these scenarios is correct with the experiments being planned for the Joint Dark Energy Mission (JDEM) that has been proposed by NASA and the U.S. Department of Energy.

“Scientists have been arguing the question ‘how precisely do we need to measure dark energy in order to know what it is?'” says Linder. “What we have done in our paper is suggest precision limits for the measurements. Fortunately, these limits should be within the range of the JDEM experiments.”

Linder and Caldwell are both members of the DOE-NASA science definition team for JDEM, which has the responsibility for drawing up the mission’s scientific requirements. Linder is the leader of the theory group for SNAP ? the SuperNova/Acceleration Probe, one of the proposed vehicles for carrying out the JDEM mission. Caldwell, a professor of physics and astronomy at Dartmouth, is one of the originators of the quintessence concept.

In their paper in Physical Review Letters Linder and Caldwell describe two scenarios, one they call “thawing” and one they call “freezing,” which point toward distinctly different fates for our permanently expanding universe. Under the thawing scenario, the acceleration of the expansion will gradually decrease and eventually come to a stop, like a car when the driver eases up on the gas pedal. Expansion may continue more slowly, or the universe may even recollapse. Under the freezing scenario, acceleration continues indefinitely, like a car with the gas pedal pushed to the floor. The universe would become increasingly diffuse, until eventually our galaxy would find itself alone in space.

Either of these two scenarios rules out Einstein’s cosmological constant. In their paper Linder and Caldwell show, for the first time, how to cleanly separate Einstein’s idea from other possibilities. Under any scenario, however, dark energy is a force that must be reckoned with.

Says Linder, “Because dark energy makes up about 70 percent of the content of the universe, it dominates over the matter content. That means dark energy will govern expansion and, ultimately, determine the fate of the universe.”

In 1998, two research groups rocked the field of cosmology with their independent announcements that the expansion of the universe is accelerating. By measuring the redshift of light from Type Ia supernovae, deep-space stars that explode with a characteristic energy, teams from the Supernova Cosmology Project headquartered at Berkeley Lab and the High-Z Supernova Search Team centered in Australia determined that the expansion of the universe is actually accelerating, not decelerating. The unknown force behind this accelerated expansion was given the name “dark energy.”

Prior to the discovery of dark energy, conventional scientific wisdom held that the Big Bang had resulted in an expansion of the universe that would gradually be slowed down by gravity. If the matter content in the universe provided enough gravity, one day the expansion would stop altogether and the universe would fall back on itself in a Big Crunch. If the gravity from matter was insufficient to completely stop the expansion, the universe would continue floating apart forever.

“From the announcements in 1998 and subsequent measurements, we now know that the accelerated expansion of the universe did not start until sometime in the last 10 billion years,” Caldwell says.

Cosmologists are now scrambling to determine what exactly dark energy is. In 1917 Einstein amended his General Theory of Relativity with a cosmological constant, which, if the value was right, would allow the universe to exist in a perfectly balanced, static state. Although history’s most famous physicist would later call the addition of this constant his “greatest blunder,” the discovery of dark energy has revived the idea.

“The cosmological constant was a vacuum energy (the energy of empty space) that kept gravity from pulling the universe in on itself,” says Linder. “A problem with the cosmological constant is that it is constant, with the same energy density, pressure, and equation of state over time. Dark energy, however, had to be negligible in the universe’s earliest stages; otherwise the galaxies and all their stars would never have formed.”

For Einstein’s cosmological constant to result in the universe we see today, the energy scale would have to be many orders of magnitude smaller than anything else in the universe. While this may be possible, Linder says, it does not seem likely. Enter the concept of “quintessence,” named after the fifth element of the ancient Greeks, in addition to air, earth, fire, and water; they believed it to be the force that held the moon and stars in place.

“Quintessence is a dynamic, time-evolving, and spatially dependent form of energy with negative pressure sufficient to drive the accelerating expansion,” says Caldwell. “Whereas the cosmological constant is a very specific form of energy ? vacuum energy ? quintessence encompasses a wide class of possibilities.”

To limit the possibilities for quintessence and provide firm targets for basic tests that would also confirm its candidacy as the source of dark energy, Linder and Caldwell used a scalar field as their model. A scalar field possesses a measure of value but not direction for all points in space. With this approach, the authors were able to show quintessence as a scalar field relaxing its potential energy down to a minimum value. Think of a set of springs under tension and exerting a negative pressure that counteracts the positive pressure of gravity.

“A quintessence scalar field is like a field of springs covering every point in space, with each spring stretched to a different length,” Linder said. “For Einstein’s cosmological constant, each spring would be the same length and motionless.”

Under their thawing scenario, the potential energy of the quintessence field was “frozen” in place until the decreasing material density of an expanding universe gradually released it. In the freezing scenario, the quintessence field has been rolling towards its minimum potential since the universe underwent inflation, but as it comes to dominate the universe it gradually becomes a constant value.

The SNAP proposal is in research and development by physicists, astronomers, and engineers at Berkeley Lab, in collaboration with colleagues from the University of California at Berkeley and many other institutions; it calls for a three-mirror, 2-meter reflecting telescope in deep-space orbit that would be used to find and measure thousands of Type Ia supernovae each year. These measurements should provide enough information to clearly point towards either the thawing or freezing scenario ? or to something else entirely new and unknown.

Says Linder, “If the results from measurements such as those that could be made with SNAP lie outside the thawing or freezing scenarios, then we may have to look beyond quintessence, perhaps to even more exotic physics, such as a modification of Einstein’s General Theory of Relativity to explain dark energy.”

Original Source: Berkeley Lab News Release

Venus, Jupiter and the Moon Reunited Again

Similar close encounter last November. Image credit: Babak A. Tafreshi Click to enlarge
Something nice is happening in the sunset sky. Venus and Jupiter, the two brightest planets, are converging, and they’re going to be beautifully close together for the next two weeks.

Step outside tonight when the sun goes down and look west. If there are no trees or buildings in the way, you can’t miss Jupiter and Venus. They look like airplanes, hovering near the horizon with their lights on full blast. (Venus is the brighter of the two.) You can see them even from brightly-lit cities.

Try catching the pair just after sundown and just before the first stars appear. Venus and Jupiter pop into view while the sky is still twilight-blue. The scene has a special beauty.

When the sky darkens completely, look to the left of Jupiter for Spica, the brightest star in the constellation Virgo. Although it’s a bright star, Spica is completely outclassed by the two planets.

Venus and Jupiter are converging at the noticeable rate of 1o per day, with closest approach coming on September 1st when the two will be a little more than 1o apart. (How much is 1o? Hold your pinky finger at arm’s length. The tip is about 1o wide.)

When planets are so close together, not only do you notice them, you’ll have a hard time taking your eyes off them. They’re spellbinding.

There’s a biological reason for this phenomenon: In the back of your eye, near the center of the retina, lies a small patch of tissue called “the fovea” where cones are extra-densely packed. “Whatever you see with the fovea, you see in high-definition,” explains Stuart Hiroyasu, O.D., of Bishop, California. “The fovea is critical to reading, driving, watching television; it has the brain’s attention.” The field of view of the fovea is 5o. When two objects converge to, say, 1o as Venus and Jupiter will do, they can beam into your fovea simultaneously, signaling your brain?attention, please!

After September 1st, the two planets separate, but the show’s not over. On September 6th, with Jupiter and Venus still pleasingly close together, the slender crescent Moon will leap up from the sun’s glare and join the two planets. Together, they’ll form a compact triangle that will simply knock your socks off.

Feel like staring? Do.

Original Source: NASA News Release

Astronomers Looking for Help with Cataclysmic Variable Star

GALEX , one of the telescopes that will study AE Aqr. Image credit: NASA Click to enlarge
Amateur astronomers are being asked to help a constellation of observatories unravel the mysteries of a puzzling binary star system.

On August 30-August 31, 2005 two space-based and four professional ground-based observatories are scheduled to observe the cataclysmic variable star AE Aqr. Each of the observatories covers a different wavelength of light and amateur astronomers have been asked to help cover the visible-light portion.

“This observing campaign will take place over nearly a full day, and since no single ground-based observatory can observe AE Aqr for that long due to Earth’s rotation, amateur astronomers can make a unique and invaluable contribution to this campaign,” said Dr. Christopher Mauche of Lawrence Livermore National Laboratory, the principal investigator of the project.

Because they are spaced all across the globe, amateur astronomers can observe this star and other celestial objects unhindered by nightfall or weather.

The Chandra and GALEX space telescopes will be working with the HESS, MAGIC, VLT, and VLA ground-based telescopes. Combined, they will provide coverage of AE Aqr from high-energy gamma-rays to low-energy radio waves. Such simultaneous multiwavelength coverage is required to provide the clearest picture of the locations, mass motions, energetics, and inter-relationships of the various emission regions in the star.

AE Aqr is an intermediate polar, a type of cataclysmic variable star. It actually consists of two stars – a red dwarf and rapidly spinning magnetic white dwarf. Material drawn off the red dwarf falls toward the white dwarf, but instead of landing on the white dwarf surface, it is flung out of the system by the white dwarf’s rapidly spinning magnetic field. This mechanism, which is uncommon but not unique to AE Aqr, is referred to as a magnetic propeller.

“Amateurs astronomers have been observing AE Aqr since 1944. Since then, they have recorded over 28,815 measurements of the star, most of them made with just a telescope and their eyes. This type of historical data is immensely valuable in studying variable stars and only amateurs can provide it,” Dr. Arne Henden, Director of the American Association of Variable Star Observers (AAVSO), said.

Amateur astronomers are being asked to observe AE Aqr every night possible until September 3. Those with CCD cameras on their telescopes are requested to make scientific brightness measurements, known as photometry, of the system as well. For information on how to measure the brightness of AE Aqr and submit results to professionals, visit the AAVSO web site at http://www.aavso.org/alertnotice .

The AAVSO is the world’s preeminent professional-amateur astronomical association. Specializing in the study of variable stars, the AAVSO’s International Database has over 11 million observations of variable stars dating back over 100 years. Founded in 1911 as part of the Harvard College Observatory, the AAVSO became independent in 1954 and currently has over 3,000 members and observers in over 40 countries.

Original Source: AAVSO News Release

Our Collision With Andromeda Will Look Like This

NGC 520. Image credit: Gemini Click to enlarge
In the constellation of Pisces, some 100 million light-years from Earth, two galaxies are seen to collide – providing an eerie insight into the ultimate fate of our own planet when the Milky Way fatally merges with our neighbouring galaxy of Andromeda.

The image of the intertwined galaxies was captured on the night of 13-14th July 2005 by the Gemini Multi-Object Spectrograph [GMOS] instrument fitted to the 8-metre class Gemini North Observatory, sited on Mauna Kea, Hawaii.

Prof. Ian Robson, Director of the UK Astronomy Technology Centre which built GMOS in collaboration with other partners said,” This is quite scary. Since GMOS was installed on the telescope back in 2001 it has taken some amazing astronomical images of very faint, distant galaxies and star forming regions, providing a wealth of scientific data, but this one sends shivers down my spine. Our saving grace is that we have about 5 billion years left before we get swallowed up by Andromeda. Nevertheless, it’s amazing to see so far in advance how planet Earth and our own galaxy will ultimately end. Glad to say I won’t be around when the fireball happens”.

The image of the combined galaxies, which are known as NGC 520, may be fairly early in their galactic dance of death and it is likely that the situation has changed dramatically in the time it has taken for their light to reach Earth*.

Prof. Robson added, “Hints of new star formation taking place can be seen in the faint red glowing areas above and beneath the middle of the image. Perhaps even now the galaxies have totally combined to form a whole new galaxy with a brand new set of stars and associated planets – and maybe new life on one of those planets!”

The unique shape of NGC 520 is the result of the two galaxies colliding. One galaxy’s dust lane can be seen easily in the foreground and a distant tail is visible at the bottom centre. These features are the result of the gravitational interactions that have robbed both galaxies of their original shapes.

Original Source: PPARC News Release

Supernova in Galaxy NGC 1559

Supernova 2005dh and NGC 1559. Image credit: ESO Click to enlarge
The southern Reticulum constellation certainly isn’t a big hit for amateur astronomers. This tiny, bleak and diamond-shaped constellation, not far on the sky from the Large Magellanic Cloud, is often overlooked. But recently, astronomers had a closer look at a galaxy situated inside it. And more precisely at an exploding star hosted by the spiral galaxy NGC 1559.

On the night of August 4, 2005, Australian amateur astronomer Reverend Robert Evans discovered a supernova just North of the galaxy with his 0.31-m telescope. The supernova – the explosion of a star – was of magnitude 13.8, that is, only 20 times fainter than the entire host galaxy. Being the 104th supernova discovered in 2005, it received the name SN 2005df. Noticeably, Evans had already discovered 2 other supernovae in the same galaxy: in 1984 (SN 1984J) and in 1986 (SN 1986L).

The following night, astronomer Marilena Salvo and her Australian colleagues classified the supernova as a somewhat unusual type Ia supernova, caught probably 10 days before it reached its maximum brightness. Such a supernova is thought to be the result of the explosion of a small and dense star – a white dwarf – inside a binary system. As its companion was continuously spilling matter onto the white dwarf, the white dwarf reached a critical mass, leading to a fatal instability and the supernova.

These are exactly a kind of supernovae in which Dietrich Baade, Ferdinando Patat (ESO), Lifan Wang (Lawrence Berkeley National Laboratory, USA), and their colleagues are interested. In particular, they study the polarization properties of this kind of supernova in order to learn more about their asphericity, which holds important clues to the detailed physics that governs this terminal catastrophe in the life of such stars.

Having an accepted observing programme that uses the FORS1 multi-mode instrument on Kueyen, one of the four Unit Telescopes of ESO’s 8.2m Very Large Telescope at Cerro Paranal, they triggered a Target of Opportunity request so that on-duty astronomers at the VLT could observe this supernova, which was done on August 6.

From a very first analysis of their data, Wang and his colleagues found that SN 2005df resembles closely another supernova they had studied before, SN 2001el, whose explosion they showed was significantly asymmetric.

NGC 1559 is a SBc(s)-type spiral galaxy located about 50 million light-years away, that weighs the equivalent of about 10,000 million of suns, and is about 7 times smaller than our Milky Way: on the sky, it measures about 4×2 arcmin2. Receding from us at a speed of about 1,300 km/s, it is a galaxy of the Seyfert type. Such galaxies are characterized by a bright nucleus that radiates strongly in the blue and in the ultraviolet. Astronomers think that about 2 solar masses of gas per year are transformed into stars in this galaxy. Like most galaxies, NGC 1559 probably contains a black hole in its centre, which should have a mass that is equivalent to 300,000 suns.

Original Source: ESO News Release

New Look for the Milky Way

Artist’s impression of the Milky Way. Image credit: NASA/JPL-Caltech/R Click to enlarge
With the help of NASA’s Spitzer Space Telescope, astronomers have conducted the most comprehensive structural analysis of our galaxy and have found tantalizing new evidence that the Milky Way is much different from your ordinary spiral galaxy.

The survey using the orbiting infrared telescope provides the fine details of a long central bar feature that distinguishes the Milky Way from more pedestrian spiral galaxies.

“This is the best evidence ever for this long central bar in our galaxy,” says Ed Churchwell, a UW-Madison professor of astronomy and a senior author of a paper describing the new work in an upcoming edition of Astrophysical Journal Letters, a leading astronomy journal.

Using the orbiting infrared telescope, the group of astronomers surveyed some 30 million stars in the plane of the galaxy in an effort to build a detailed portrait of the inner regions of the Milky Way. The task, according to Churchwell, is like trying to describe the boundaries of a forest from a vantage point deep within the woods: “This is hard to do from within the galaxy.”

Spitzer’s capabilities, however, helped the astronomers cut through obscuring clouds of interstellar dust to gather infrared starlight from tens of millions of stars at the center of the galaxy. The new survey gives the most detailed picture to date of the inner regions of the Milky Way.

“We’re observing at wavelengths where the galaxy is more transparent, and we’re bringing tens of millions of objects into the equation,” says Robert Benjamin, the lead author of the new study and a professor of physics at the University of Wisconsin-Whitewater.

The possibility that the Milky Way Galaxy has a long stellar bar through its center has long been considered by astronomers, and such phenomena are not unheard of in galactic taxonomy. They are clearly evident in other galaxies, and it is a structural characteristic that adds definition beyond the swirling arms of typical spiral galaxies.

The new study provides the best estimates for the size and orientation of the bar, which are far different from previous estimates.

It shows a bar, consisting of relatively old and red stars, spanning the center of the galaxy roughly 27,000 light years in length – 7,000 light years longer than previously believed. It also shows that the bar is oriented at about a 45-degree angle relative to a line joining the sun and the center of the galaxy.

Previously, astronomers debated whether a presumed central feature of the galaxy would be a bar structure or a central ellipse – or both. The new research, the Wisconsin astronomers say, clearly shows a bar-like structure.

“To date, this is the best evidence for a long bar in our galaxy,” Benjamin asserts. “It’s hard to argue with this data.”

The Spitzer Space Telescope was lofted into orbit in August of 2003. It consists of a telescope and three science instruments, including the Infrared Array Camera, the primary instrument used for the new survey, known as GLIMPSE for Galactic Legacy Mid-Plane Survey Extraordinaire.

NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA’s Science Mission Directorate, Washington, D.C. Science operations are conducted at the Spitzer Science Center in Pasadena. JPL is a division of the California Institute of Technology.

Original Source: UW-Madison News Release

Galaxies Could Be Twice as Large as Previously Estimated

A wide-field view of NGC 300. Image credit: AAO-David Malin/Gemini Observatory. Click to enlarge
Like archaeologists unearthing a ‘lost city,’ astronomers using the 8-meter Gemini South telescope have revealed that the galaxy NGC 300 has a large, faint extended disk made of ancient stars, enlarging the known diameter of the galaxy by a factor of two or more.

The finding also implies that our own Milky Way Galaxy could be much larger than current textbooks say. Scientists will also need to explain the mystery of how galaxies like NGC 300 can form with stars so far from their centers.

The research, by an Australian and American team of scientists was just published in the August 10, 2005 issue of the Astrophysical Journal.

The team used the Gemini Multi-Object Spectrograph on the Gemini South telescope in Chile, and were able to clearly resolve extremely faint stars in the disk up to 47,000 light-years from the galaxy?s center?double the previously known radius of the disk. To detect these stars, images were obtained that went more than ten times ?deeper? than any previous images of this galaxy (Figure 1).

?A few billion years ago the outskirts of NGC 300 were brightly lit suburbs that would have shown up as clearly as its inner metropolis,? said the paper?s lead author, Professor Joss Bland-Hawthorn of the Anglo-Australian Observatory in Sydney, Australia. ?But the suburbs have dimmed with time, and are now inhabited only by faint, old stars?stars that need large telescopes such as Gemini South to detect them.?

The finding has profound implications for our own galaxy since most current estimates put the size of our Milky Way at about 100,000 light-years or about the size now estimated for NGC 300. ?However, the galaxy is much more massive and brighter than NGC 300 so on this basis, our galaxy is also probably much larger than we previously thought?perhaps as much as 200,000 light-years across,? said Bland-Hawthorn.

The Galaxy That Keeps On Keeping On!

Adding to these compelling findings is the fact that the team found no evidence for truncating, or an abrupt ?cutting-off’ of the star population as seen in many galaxies further from the central regions.

Team member Professor Bruce Draine of Princeton University explains: “It’s hard to understand how such an extensive stellar disk that falls off so smoothly in density could have formed ? this is really a huge surprise to us. Because it takes an incredibly long time to evenly disperse stars from a galaxy’s central disk to these extreme distances, it seems more likely that we are seeing the results of star formation that took place long ago, perhaps as much as ten billion years ago.”

?We now realize that there are distinctly different types of galaxy disks,? said team member Professor Ken Freeman of the Research School of Astronomy and Astrophysics at the Australian National University. ?Probably most galaxies are truncated?the density of stars in the disk drops off sharply. But NGC 300 just seems to go on forever. The density of stars in the disk falls off very smoothly and gradually.?

The observers traced NGC 300?s disk out to the point where the surface density of stars was equivalent to a one-thousandth of a sun per square light-year. ?This is the most extended and diffuse population of stars ever seen,? said Bland-Hawthorn.

NGC 300 is a spiral member of the Sculptor group of galaxies, the closest extragalactic cluster to us, and is about 6.1 million light-years away. Most of its stars lie in a fairly flat disk making it appear to be a very normal spiral galaxy like our Milky Way. NGC 300 is the first galaxy outside of our Local Group to be studied to this depth. There have only been two others studied to such faint levels, the Andromeda galaxy and its neighbor M33, both in our Local Group (see adjacent background information box).

The researchers have been granted more time on Gemini South to determine exactly what kind of stars they are seeing in the outskirts of NGC 300, and to make similar studies of other galaxies.

?We still have a lot to learn about how galaxies like ours formed,? said Bland-Hawthorn. ?Our next Gemini observations, that we have planned for later this year, should provide even more important clues and hopefully even more surprises!?

Original Source: Gemini Observatory

What Does the Milky Way Look Like?

Spiral galaxy NGC 4565. Image credit: ESO Click to enlarge
How does the Galaxy in which we live look like?

It is almost certain that we will never be able to send a probe out of our Milky Way to take a snapshot, in the same way as the first satellites could do to give us striking images of planet Earth. But astronomers do not need this to imagine what our bigger home resembles. And they have a pretty good idea of it.

The Milky Way with its several hundreds of billion stars is thought to be a relatively flat disc -100,000 light-year across- with a central bulge lying in the direction of the constellation Sagittarius (The Archer) and six spiral arms. The Milky Way has most probably also a central bar made of young, bright stars.

If we can’t take pictures of the Milky Way, we may photograph others galaxies which astronomers think look similar to it. The two galaxies presented here are just two magnificient examples of barred spiral galaxies. One – Messier 83 – is seen face-on, and the other – NGC 4565 – appears edge-on. Together, they give us a nice idea of how the Milky Way may appear from outer space.

These images are based on data obtained with the twin FORS1 and FORS2 (FOcal Reducer and Spectrograph) instruments attached to two ESO’s 8.2-m Unit Telescopes of the Very Large Telescope Array located on Cerro Paranal. The data were extracted from the ESO Science Archive Facility, which contains approximately 50 Terabytes of scientific data and is, since April 1, 2005, open to the worldwide community. These invaluable data have already led to the publication of more than 1000 scientific papers. They also contains many nice examples of beautiful astronomical objects which could be the theme of as many midsummer’s dreams.

NGC 4565

The first galaxy pictured here is NGC 4565, which for obvious reasons is also called the Needle Galaxy. First spotted in 1785 by Uranus’ discoverer, Sir William Herschel (1738-1822), this is one of the most famous example of an edge-on spiral galaxy and is located some 30 million light-years away in the constellation Coma Berenices (Berenice’s Hair). It displays a bright yellowish central bulge that juts out above most impressive dust lanes.

Because it is relatively close (it is only 12 times farther away than Messier 31, the Andromeda galaxy, which is the major galaxy closest to us) and relatively large (roughly one third larger than the Milky Way), it does not fit entirely into the field of view of the FORS instrument (about 7 x 7 arcmin2).

Many background galaxies are also visible in this FORS image, giving full meaning to their nickname of “island universes”.

Messier 83

If our Milky Way were to resemble this one, we certainly would be proud of our home! The beautiful spiral galaxy Messier 83 is located in the southern constellation Hydra (the Water Snake) and is also known as NGC 5236 and as the Southern Pinwheel galaxy. Its distance is about 15 million light-years. Being about twice as small as the Milky Way, its size on the sky is 11×10 arcmin2.

The image show clumpy, well-defined spiral arms that are rich in young stars, while the disc reveals a complex system of intricate dust lanes. This galaxy is known to be a site of vigorous star formation.

Original Source: ESO News Release