This is How Astronauts Would Escape from the Artemis II Launch Pad

KSC Emergency Escape Baskets

Space exploration is a tricky and at times, dangerous business. The safety of the crews is of paramount importance and escape technology is always factored into spacecraft design. Whilst Artemis I did not require such provisions when it launched Artemis II with astronauts on board is being prepared with a ski-lift style escape system to take them far away from the launch pad. 

Continue reading “This is How Astronauts Would Escape from the Artemis II Launch Pad”

The Moon is Still Shrinking, Explaining Why it Still Has Landslides

Artemis mission landing locations near the South Pole of the Moon. Blue boxes indicate selected landing spots, while small red marks are locations of scarps caused by moonquakes. Credit: NASA/ LRO/ LROC/ASU/ Smithsonian Institution
Artemis mission landing locations near the South Pole of the Moon. Blue boxes indicate selected landing spots, while small red marks are locations of scarps caused by moonquakes. Credit: NASA/ LRO/ LROC/ASU/ Smithsonian Institution

Although our Moon formed 4.5 billion years ago, it’s still evolving. The interior continues to cool and its orbit is slowly changing. As a result, the Moon has lost 150 feet of its circumference. That shrinkage contributes to near-constant moonquakes, and those trigger landslides and other surface changes. The Moon is currently uninhabited, but all that activity threatens future Artemis landing sites and missions at the South Pole.

Continue reading “The Moon is Still Shrinking, Explaining Why it Still Has Landslides”

NASA is Pushing Back its Moon Landings to 2026

I wasn’t around for the Apollo program that took human beings to the Moon. I would have love to have seen it all unfold though. With NASAs Artemis program the opportunity will soon be with us again to watch humans set foot on another world, just not for the first time. Alas NASA announced on Tuesday that the Moon landings which form part of Artemis 3, have been pushed back one year to 2026. 

Continue reading “NASA is Pushing Back its Moon Landings to 2026”

We've Entered a New Era: The Lunar Anthropocene

Humans on the Moon. Image credit: Envato Elements
Humans on the Moon. Image credit: Envato Elements

For almost half a century, the term “Anthropocene” has been informally used to describe the current geological epoch. The term acknowledges how human agency has become the most significant factor when it comes to changes in Earth’s geology, landscape, ecosystems, and climate. According to a new study by a team of geologists and anthropologists, this same term should be extended to the Moon in recognition of humanity’s exploration (starting in the mid-20th century) and the growing impact our activities will have on the Moon’s geology and the landscape in the near future.

Continue reading “We've Entered a New Era: The Lunar Anthropocene”

Simulating How Moon Landings Will Kick Up Dust

A look at the Apollo 12 landing site. Astronaut Alan Bean is shown, working near the Modular Equipment Stowage Assembly (MESA) on the Apollo 12 Lunar Module (LM) during the mission's first extravehicular activity, (EVA) on Nov. 19, 1969. Credit: NASA.

When spacecraft land on the Moon, their exhaust strikes the powdery regolith on the lunar surface. The Moon has low gravity and no atmosphere, so the dust is thrown up in a huge plume. The dust cloud could possibly interfere with the navigation and science instruments or cause visual obstructions. Additionally, the dust could even be propelled into orbit, risking other spacecraft nearby.

In working to better understand the impact future landers might have on the lunar surface, NASA has developed a new supercomputer simulation. They used it to predict how Apollo 12’s lunar lander exhaust would interact with regolith, then compared this to the actual results of the landing.

Continue reading “Simulating How Moon Landings Will Kick Up Dust”

Balloon Animals and Bouncy Castles on the Moon. The Case for Inflatable Habitats

Artist’s Conceptual Image of Inflatable Applications on the Lunar Surface. Credit: AMA Advanced Concepts Lab

Every year, NASA’s Breakthrough, Innovative, and Game-Changing (BIG) Idea Challenge invites student innovators to build and demonstrate concepts that can benefit future human missions to the Moon and beyond. This year’s theme is “Inflatable Systems for Lunar Operations,” which could greatly reduce the mass and stowed volume of payloads sent to the Moon. This is critical for the Artemis Program as it returns astronauts to the Moon for the first time since the Apollo Era over fifty years ago. It will also reduce the costs of sending payloads to the Moon, Mars, and other deep-space destinations.

Continue reading “Balloon Animals and Bouncy Castles on the Moon. The Case for Inflatable Habitats”

This Moon Rover Wheel Could be 3D Printed on the Moon

NASA mechanical design engineer Richard Hagen, left, and ORNL researcher Michael Borish inspect a lunar rover wheel prototype that was 3D printed at the Manufacturing Demonstration Facility. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

When you think about sending missions to the Moon, every single gram counts on launch day. Therefore, it makes sense to live off the land when you arrive with in-situ resource utilization. For example, what if you could fly a rover without wheels and 3D print them out of lunar regolith when you get there?

It just might happen.

Researchers used a 3D printer to build the same design for a wheel that will be part of the upcoming NASA VIPER rover. It was done using additive manufacturing (another word for 3D printing), melting metal powder and laying down and bonding a large number of successive thin layers of materials into the designed shape.

Continue reading “This Moon Rover Wheel Could be 3D Printed on the Moon”

We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration

Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA
Artist's impression of astronauts on the lunar surface, as part of the Artemis Program. Credit: NASA

Although humans have flown to space for decades, the missions have primarily been in low-Earth orbit, with just a handful of journeys to the Moon. Future missions with the upcoming Artemis program aim to have humans living and working on the Moon, with the hopes of one day sending humans to Mars.

However, the environments of the Moon and deep space present additional health challenges to astronauts over low-Earth orbit (LEO), such as higher radiation, long-term exposure to reduced gravity and additional acceleration and deceleration forces. A new paper looks at the future of biomedicine in space, with a sobering takeaway: We currently don’t know enough about the biomedical challenges of exploring deep space to have an adequate plan to ensure astronaut health and safety for the Artemis program.

Continue reading “We Don't Know Enough About the Biomedical Challenges of Deep Space Exploration”

SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing

A Raptor Vacuum engine was successfully cold-started during a test in August 2023. Via SpaceX.

When NASA astronauts return to the surface of the Moon in the Artemis III mission, the plan is to use a modified SpaceX Starship as their lunar lander. NASA announced last week that SpaceX has now demonstrated an important capability of the vacuum-optimized Raptor engine that will be used for the lander: an extreme cold start.  

A test last month successfully confirmed the engine can be started in the frigid conditions of space, even when the vehicle has spent an extended time in space, where temperatures will drop lower than a shorter low-Earth orbit mission. The Raptor vacuum engine was chilled to mimic conditions after a long coast period in space, and then was successfully fired.  

Continue reading “SpaceX Test Fires a Raptor Engine, Simulating a Lunar Landing”

A Massive Solar Storm was Detected on Earth, Mars, and the Moon

Giant solar eruption felt on Earth, Moon and Mars. Credit: ESA

A coronal mass ejection erupted from the Sun on October 28th, 2021, spreading solar energetic particles (SEPs) across a volume of space measuring more than 250 million km (155.34 million mi) wide. This means that the event was felt on Earth, Mars, and the Moon, which was on the opposite side of the Sun at the time. It was also the first time that a solar event was measured simultaneously by robotic probes on Earth, Mars, and the Moon, which included ESA’s ExoMars Trace Gas Orbiter (TGO) and Eu:CROPIS orbiter, NASA’s Curiosity rover and Lunar Reconnaissance Orbiter (LRO), and China’s Chang’e-4 lander.

The ESA’s Solar Orbiter, Solar and Heliospheric Observatory (SOHO), and BepiColombo missions were also caught by the outburst and provided additional measurements of this solar event. The study of Solar Particle Events (SPE) – aka. solar flares – and “space weather” phenomena are vital to missions operating in Low Earth Orbit (LEO) – for example, crews living and working on the International Space Station (ISS). But it is especially vital for missions destined for locations beyond LEO and cislunar space, including Project Artemis and the many proposals for sending astronauts to the Moon and Mars in the coming years.

Continue reading “A Massive Solar Storm was Detected on Earth, Mars, and the Moon”