Solar Activity is Picking Up

The current solar cycle (24) has been pretty boring, but a new sunspot — 1035 — is growing rapidly and now is seven times wider than Earth. Solar astronomers are predicting it could grow to be the largest sunspot of the year. There’s not been a lot of competition for the biggest sunspot, though: for 259 days (or 74%) of 2009, the sun has been spotless. But maybe the (solar) tide is turning. There’s been other action recently besides the new sunspot. A long-duration C4-class solar flare erupted this morning at 0120 UT from around the sunspot, which hurled a coronal mass ejection (CME) towards Earth. (See below for image of the CME that blasted off the sun on Dec. 14) Observers at high-latitude could see some aurora action when the CME arrives on or about Dec. 18th. Keep cheering; maybe the sun will come out of its doldrums.

CME on Dec. 14, 2009.  Credit: NASA, SoHO
CME on Dec. 14, 2009. Credit: NASA, SoHO

Remember, don’t look at the Sun directly to try and see the sunspot. NASA has a great site that gives real-time data and updated images of the Sun from SoHO (Solar and Heliospheric Observatory.) Or check out Spaceweather.com, which also provides updates. And if you have a safe way of observing and imaging the sunspot, feel free to post images here, or send to Nancy.

Hubble Finds Smallest Kuiper Belt Object Ever Seen

Artists impression of a small KBO detected by Hubble as it transited a star. Credit: NASA, ESA, and G. Bacon (STScI)

Like finding a needle in a haystack, the Hubble Space Telescope has discovered the smallest object ever seen in visible light in the Kuiper Belt. While Hubble didn’t image this KBO directly, its detection is still quite impressive. The object is only 975 meters (3,200 feet) across and a whopping 6.7 billion kilometers (4.2 billion miles) away. The smallest Kuiper Belt Object (KBO) seen previously in reflected light is roughly 48 km (30 miles) across, or 50 times larger. This provides the first observational evidence for a population of comet-sized bodies in the Kuiper Belt.

The object detected by Hubble is so faint — at 35th magnitude — it is 100 times dimmer than what Hubble can see directly.

So then how did the space telescope uncover such a small body? The telltale signature of the small vagabond was extracted from Hubble’s pointing data, not by direct imaging. When the object passed in front a of star, Hubble’s instruments picked up the occulation.

Hubble has three optical instruments called Fine Guidance Sensors (FGS). The FGSs provide high-precision navigational information to the space observatory’s attitude control systems by looking at select guide stars for pointing. The sensors exploit the wavelike nature of light to make precise measurement of the location of stars.

Illustration of how Hubble found a tiny KBO. Credit: NASA, ESA, and A. Feild (STScI)
Illustration of how Hubble found a tiny KBO. Credit: NASA, ESA, and A. Feild (STScI)

In details of a paper published in the December 17th issue of the journal Nature, Hilke Schlichting of the California Institute of Technology in Pasadena, Calif., and her collaborators determined that the FGS instruments are so good that they can see the effects of a small object passing in front of a star. This would cause a brief occultation and diffraction signature in the FGS data as the light from the background guide star was bent around the intervening foreground KBO.

They selected 4.5 years of FGS observations for analysis. Hubble spent a total of 12,000 hours during this period looking along a strip of sky within 20 degrees of the solar system’s ecliptic plane, where the majority of KBOs should dwell. The team analyzed the FGS observations of 50,000 guide stars in total.

Scouring the huge database, Schlichting and her team found a single 0.3-second-long occultation event. This was only possible because the FGS instruments sample changes in starlight 40 times a second. The duration of the occultation was short largely because of the Earth’s orbital motion around the Sun.

They assumed the KBO was in a circular orbit and inclined 14 degrees to the ecliptic. The KBO’s distance was estimated from the duration of the occultation, and the amount of dimming was used to calculate the size of the object. “I was very thrilled to find this in the data,” says Schlichting.

Hubble observations of nearby stars show that a number of them have Kuiper Belt–like disks of icy debris encircling them. These disks are the remnants of planetary formation. The prediction is that over billions of years the debris should collide, grinding the KBO-type objects down to ever smaller pieces that were not part of the original Kuiper Belt population. The Kuiper Belt is therefore collisionally evolving, meaning that the region’s icy content has been modified over the past 4.5 billion years.

The finding is a powerful illustration of the capability of archived Hubble data to produce important new discoveries. In an effort to uncover additional small KBOs, the team plans to analyze the remaining FGS data for nearly the full duration of Hubble operations since its launch in 1990.

Source: HubbleSite

Astronomers Find Super-Earth With An Atmosphere

This artist's conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA

This artist’s conception shows the newly discovered super-Earth GJ 1214b, which orbits a red dwarf star 40 light-years from our Earth. Credit: Credit: David A. Aguilar, CfA

More exoplanets this week! Today astronomers announced the discovery of so called super-Earth around a nearby, low-mass star, GJ1214. The newly discovered planet has a mass about six times that of Earth and 2.7 times its radius, falling in between the size of Earth and the ice giants of the Solar System, Uranus and Neptune. But this latest exoplanet, GJ1214b, has something else, too: an atmosphere about 200 km thick. “This atmosphere is much thicker than that of the Earth, so the high pressure and absence of light would rule out life as we know it,” said David Charbonneau, lead author of a paper in Nature reporting the discovery, “but these conditions are still very interesting, as they could allow for some complex chemistry to take place.”

GJ1214b is also a very hot place to be. It orbits its star once every 38 hours at a distance of only two million kilometres — 70 times closer to its star than the Earth is to the Sun. “Being so close to its host star, the planet must have a surface temperature of about 200 degrees Celsius, too hot for water to be liquid,” said Charbonneau.

However, another member of the team said water ice could possibly be present on GJ1214b, deep inside the heart of the planet. “Despite its hot temperature, this appears to be a waterworld,” said graduate Zachory Berta who first spotted the hint of the planet among the data. “It is much smaller, cooler, and more Earth-like than any other known exoplanet.”

The star is a small, red type M star about one-fifth the size of our Sun. It has a surface temperature of only about 2,700 C (4,900 degrees F) and a luminosity only three-thousandths as bright as the Sun.

Artist impression of how the newly discovered super-Earth surrounding the nearby star GJ1214 may look.  Credit: ESO/L. Calçada
Artist impression of how the newly discovered super-Earth surrounding the nearby star GJ1214 may look. Credit: ESO/L. Calçada

Charbonneau compared this new exoplanet to Corot-7b, the first rocky super-Earth found using the transit method, when the planet’s orbit is takes it across the face of its parent star, from our vantage point. .
The astronomers were also able to obtain the mass and radius of GJ1214b, allowing them to determine the density and to infer the inner structure.

Although the mass of GJ1214b is similar to that of Corot-7b, its radius is much larger, suggesting that the composition of the two planets must be quite different. While Corot-7b probably has a rocky core and may be covered with lava, astronomers believe that three quarters of GJ1214b is composed of water ice, the rest being made of silicon and iron.

“The differences in composition between these two planets are relevant to the quest for habitable worlds,” said Charbonneau. “If super-Earth planets in general are surrounded by an atmosphere similar to that of GJ1214b, they may well be inhospitable to the development of life as we know it on our own planet.”

The atmosphere was detected when the astronomers compared the measured radius of GJ1214b with theoretical models of planets. They found that the observed radius exceeds the models’ predictions, and deduced that a thick atmosphere was blocking the star’s light.

“Because the planet is too hot to have kept an atmosphere for long, GJ1214b represents the first opportunity to study a newly formed atmosphere enshrouding a world orbiting another star,” said Xavier Bonfils, another member of the team. “Because the planet is so close to us, it will be possible to study its atmosphere even with current facilities.”
The MEarth (pronounced "mirth") Project is an array of eight identical 16-inch-diameter RC Optical Systems telescopes that monitor a pre-selected list of 2,000 red dwarf stars. Each telescope perches on a highly accurate Software Bisque Paramount and funnels light to an Apogee U42 charge-coupled device (CCD) chip, which many amateurs also use. Credit: Dan Brocious, CfA
The planet was first discovered as a transiting object within the MEarth project, which follows about 2000 low-mass stars to look for transits by exoplanets, and uses a fleet of eight small, (16-inch) amateur-sized ground-based telescopes.

To confirm the planetary nature of GJ1214b and to obtain its mass (using the so-called Doppler method), the astronomers needed the full precision of the HARPS spectrograph, attached to ESO’s 3.6-metre telescope at La Silla.

The next step for astronomers is to try to directly detect and characterize the atmosphere, which will require a space-based instrument like NASA’s Hubble Space Telescope. GJ1214b is only 40 light-years from Earth, within the reach of current observatories.

Source: ESO, CFA

Signs of Life Detected on the Moon?

Image from the Moon Impact Probe of the lunar surface. Credit: ISRO

A website based in India has reported researchers with the Chandrayaan-1 mission may have found “signs of life in some form or the other on the Moon.” DNAIndia.com quoted Surendra Pal, associate director of the Indian Space Research Organization (ISRO) Satellite Centre as saying that Chandrayaan-1 picked up signatures of organic matter on parts of the Moon’s surface. “The findings are being analyzed and scrutinized for validation by ISRO scientists and peer reviewers,” Pal said.

Sources in India say Chandrayaan project director M. Annadurai later commented that the story was broken very prematurely. However, he did not dismiss the idea.

At a press conference Tuesday at the American Geophysical Union fall conference, scientists from NASA’s Lunar Reconnaissance Orbiter also hinted at possible organics locked away in the lunar regolith. When asked directly about the Chandrayaan-1 claim of finding life on the Moon, NASA’s chief lunar scientist, Mike Wargo, certainly did not dismiss the idea either but said, “It is an intriguing suggestion, and we are certainly very interested in learning more of their results.”

Chandrayaan-1’s Moon Impact Probe, or MIP impacted the within the Shackleton Crater on the Moon’s south pole on Nov. 14, 2008. An anonymous Chandrayaan-1 scientist said MIP’s mass spectrometer detected chemical signatures of organic matter in the soil kicked up by the impact.

“Certain atomic numbers were observed that indicated the presence of carbon components. This indicates the possibility of the presence of organic matter (on the Moon),” a senior scientist told DNAIndia.

The scientist added the source of the organics could be comets or meteorites which have deposited the matter on the Moon’s surface but the recent discovery by another impact probe — the LCROSS mission — of ice in the polar regions of the Moon also “lend credence to the possibility of organic matter there.”

Undoubtedly, getting from carbon compounds directly to organics is a bit of a stretch, but amino acids have been detected in comets and were also found in pieces of the asteroid 2008 TC3 that landed in Africa over a year ago. Over the millennia, the Moon has been bombarded by comet and asteroid hits.

We’ll keep you posted on any official announcements by ISRO.

Sources: BAUT Forum, DNA India, AGU press conference

LRO Finds Some Surprises on the Moon

Bruno Crater. Taken by: LROC Narrow Camera. Image Credit: NASA/GSFC/Arizona State University

[/caption]
The Lunar Reconnaissance Orbiter (LRO) is getting the closest look yet at the Moon from orbit, providing crucial insights to help prepare for a possible return of humans to the lunar surface. “There is a lot of natural beauty on the Moon,” said Mike Wargo, NASA’s chief lunar scientist, speaking at the American Geophysical Union meeting on Tuesday. “LRO is collecting data to support a return to the Moon, studying a diverse and representative set of sites selected on scientific, engineering, and resource potential and representative of the wide range of terrains present on the Moon.”

Scientists explained how various instruments on LRO are returning surprising data while helping scientists map the moon in incredible detail and understand the lunar environment.

LROC, or the LRO Camera, has now mapped in high resolution all the Apollo landing sites and 50 sites that were identified by NASA’s Constellation Program to be representative of the wide range of terrains present on the moon.

Some of the most intriguing images revisit the sites of humankind’s first forays beyond Earth orbit.

Enlargement of area surrounding Apollo 11 landing site. Credit: NASA/GSFC/Arizona State University
Enlargement of area surrounding Apollo 11 landing site. Credit: NASA/GSFC/Arizona State University

“Imaging the Apollo landing sites have served a practical purpose,” said Mark Robinson, LROC principal investigator, “as we are using them in lieu of stars to calibrate the LROC Narrow Angle Cameras. Plus these images are much more fun than stars, because we get to see where humans used to walk. It’s also much less stress on the spacecraft because you don’t have to slew in and out to look at the stars.”

Since the locations of the Apollo spacecraft and other hardware left by the astronauts are known to about nine feet absolute accuracy, Robinson said they can tie the Narrow Angle Camera geometric and timing calibration to the coordinates of the Apollo Laser Ranging Retroreflectors and Apollo Lunar Surface Experiments Packages. “This ground truth enables more accurate coordinates to be derived for virtually anywhere on the moon. Scientists are currently analyzing brightness differences of the surface material stirred up by the Apollo astronauts, comparing them with the local surroundings to estimate physical properties of the surface material. Such analyses will provide critical information for interpreting remote sensing data from LRO, as well as from India’s Chandrayaan-1, and Japan’s Kaguya missions.”

Robinson said the soil compacted by the Apollo astronauts and lunar rovers is darker than undisturbed soil. “Disturbing the soil changes the brightness by a factor of two,” he said.

LRO’s Diviner instrument has discovered that the bottoms of polar craters in permanent shadow can be brutally cold. Mid-winter nighttime surface temperatures inside the coldest craters in the north polar region dip down to 26 Kelvin (416 below zero Fahrenheit, or minus 249 degrees Celsius). “These are the coldest temperatures that have been measured thus far anywhere in the solar system. You may have to travel to Kuiper Belt to find temperatures this low” said David Paige, principal investigator for the Diviner Lunar Radiometer Experiment. “The temperatures we are observing both day and night are way cold enough to preserve water ice for extended periods, as well as a wide range of compounds such as carbon dioxide and organic molecules. There could be all kinds of interesting compounds trapped there.”

Paige also noted that it turns out the moon does have seasons. “The Moon has a tilt of 1.54 degrees, so at most latitudes the lunar seasons are hardly noticeable,” he said, “but at Polar Regions, there are significant variation in shadows and temperatures because of this tilt.”

The Cosmic Ray Telescope for the Effects of Radiation, or CRaTER, is measuring the amount of space radiation at the Moon to help determine the level of protection required for astronauts during lengthy expeditions on the moon or to other solar system destinations.

“This surprising solar minimum, or quiet period for the sun regarding magnetic activity, has led to the highest level of space radiation in the form of Galactic Cosmic Rays, or GCRs, fluxes and dose rates during the era of human space exploration,” said Harlan Spence, principal investigator the CRaTER instrument. “The rarest events – cosmic rays with enough energy to punch through the whole telescope – are seen once per second, nearly twice higher than anticipated. Crater radiation measurements taken during this unique, worst-case solar minimum will help us design safe shelters for astronauts.”

GCRs are electrically charged particles – electrons and atomic nuclei – moving at nearly the speed of light into the solar system. Magnetic fields carried by the solar wind deflect many GCRs before they approach the inner solar system. However, the sun is in an unusually long and deep quiet period, and the interplanetary magnetic fields and solar wind pressures are the lowest yet measured, allowing an unprecedented influx of GCRs.

Scientists expected the level of GCRs to drop as LRO got closer to the moon for its mapping orbit. This is because GCRs come from all directions in deep space, but the moon acts as a shield, blocking the particles behind it across about half the sky in close lunar proximity.

“But surprisingly, as we went closer to surface, amount of radiation decrease did not happen as quickly as predicted,” said Spence. “The difference is that the Moon is a source of secondary radiation. This is likely due to interactions between the Galactic Cosmic Rays and the lunar surface. The primary GCRs produce secondary radiation by shattering atoms in the lunar surface material; the lunar surface then becomes a significant secondary source of particles, and the resulting radiation dose is thereby 30-40 percent higher than expected.”

But Spence said the amount of radiation shouldn’t be a showstopper, as far as future human missions to the Moon. The amount of radiation, even at its highest, is comparable to US yearly exposure limits for people with occupational exposure such as x-ray technicians or uranium miners.

The team also wants to see what the radiation environment on the Moon is like during an active solar cycle – but they might have to wait awhile.

“We’re eager to see a big solar flare, so we can evaluate the hazards from solar-generated cosmic rays, but we’ll probably have to wait a couple years until the sun wakes up,” said Spence.

Wargo said the LRO findings emphasizes the importance of engaging the scientific community for exploration. “The work being done in heliophysics areas is important to keeping astronauts safe,” he said, “as well as being able to model the activity of the sun and the generations of energetic solar particles. One of the ‘holy grails’ would be to be able predict the the Sun’s activities and be able to give an ‘all clear’ of how many days when astronauts could be on an EVA and what the likelihood of solar energetic particles being emitted from the sun. The work we are doing to enable exploration is helping our scientific understanding.”

LRO is expected to return more data about the moon than all previous orbital missions combined.

Source: AGU Press conference, press release

Old Gimpy Wheel on Spirit Rover Shows Signs of Life

Could it be true that the old gimpy wheel on the Spirit rover is making a comeback? The right-front wheel, which stopped operating way back on Sol 779 (March 13, 2006), surprised engineers by indicating normal resistance and turning slightly during a resistance test for that wheel. Spirit, which has been stuck in soft soil for several months, recently got bad news that the right rear wheel also stopped working (Nov. 21), leaving her with just four of six wheels operational. Engineers conducted tests on Dec. 12 and the right rear wheel continued to show no motion and exhibited very high resistance in the motor winding. Just for fun (I’m assuming) engineers also test the right front wheel – the wheel that Spirit has limped with in coming down from the top of Husband Hill and making the trek across Gusev Crater to the Home Plate region where she currently sits. In surprises of all surprises, the old gimpy wheel showed signs of life.

Diagnostic tests were run on Spirit’s right-rear wheel and right-front wheel on Sol 2013 (Dec. 12, 2009). The recently stalled right-rear wheel continued to show no motion. Engineers expected nothing from the right front wheel. The last time it was checked was just after its apparent failure in 2006 and at that time indicated an open circuit. JPL says that although no clear theory for failure had been established, the failure was generally regarded as permanent.

JPL also says it is important to remember that the Sol 2013 test of the right-front wheel was only a rotor resistance test, and no conclusions can be drawn at this point without further testing.

The plan for Spirit on Sol 2116 (Dec. 15) is to command a drive, which will test the functionality of both the right-front and the right-rear wheels. The results are expected Wednesday.

Spirit continues to surprise….stay tuned!

New Images Provide Insight Into Our Sun’s Ultimate Fate

Artists concept of Chi Cygni Credit: ESO/L. Calçada

[/caption]

When our Sun begins to die, it will become a red giant as it runs out of hydrogen fuel at its core. Astronomers have a pretty good idea of what will transpire: the sun will swell to a size so large that it will swallow every planet out to Mars in our solar system. Don’t worry, though, this won’t happen for another 5 billion years. But now, astronomers have been able to watch in detail the death of a sun-like star about 550 light-years from Earth to get a better grasp on what the end might be for our Sun. The star, Chi Cygni, has swollen in size, and is now writhing in its death throes. The star has begun to pulse dramatically in and out, beating like a giant heart. New close-up photos of the surface of this distant star show its throbbing motions in unprecedented detail.

Using interferometry to image the star's surface at four separate times, astronomers found that the star grows to a diameter of 480 million miles - large enough to engulf the asteroid belt - before shrinking to a minimum diameter of 300 million miles. Chi Cygni also shows significant hotspots near minimum radius. Credit: Sylvestre Lacour, Observatoire de Paris
Using interferometry to image the star's surface at four separate times, astronomers found that the star grows to a diameter of 480 million miles - large enough to engulf the asteroid belt - before shrinking to a minimum diameter of 300 million miles. Chi Cygni also shows significant hotspots near minimum radius. Credit: Sylvestre Lacour, Observatoire de Paris

“This work opens a window onto the fate of our Sun five billion years from now, when it will near the end of its life,” said Sylvestre Lacour of the Observatoire de Paris, who led a team of astronomers studying Chi Cygni.

The scientists compared the star to a car running out of gas. The “engine” begins to sputter and pulse. On Chi Cygni, the sputterings show up as a brightening and dimming, caused by the star’s contraction and expansion.

For the first time, astronomers have photographed these dramatic changes in detail.

“We have essentially created an animation of a pulsating star using real images,” stated Lacour. “Our observations show that the pulsation is not only radial, but comes with inhomogeneities, like the giant hotspot that appeared at minimum radius.”

Click here to watch the animation.

Stars at this life stage are known as Mira variables. As it pulses, the star is puffing off its outer layers, which in a few hundred thousand years will create a beautifully gleaming planetary nebula.

Chi Cygni pulses once every 408 days. At its smallest diameter of 300 million miles, it becomes mottled with brilliant spots as massive plumes of hot plasma roil its surface, like the granules seen on our Sun’s surface, but much larger. As it expands, Chi Cygni cools and dims, growing to a diameter of 480 million miles – large enough to engulf and cook our solar system’s asteroid belt.

Imaging variable stars is an extremely difficult task. First, Mira variables hide within a compact and dense shell of dust and molecules. To study the stellar surface within the shell, astronomers need to observe the stars in infrared light, which allows them to see through the shell of molecules and dust, like X-rays enable physicians to see bones within the human body.

Secondly, these stars are very far away, and thus appear very small. Even though they are huge compared to the Sun, the distance makes them appear no larger than a small house on the moon as seen from Earth. Traditional telescopes lack the proper resolution. Consequently, the team turned to a technique called interferometry, which involves combining the light coming from several telescopes to yield resolution equivalent to a telescope as large as the distance between them.

They used the Smithsonian Astrophysical Observatory’s Infrared Optical Telescope Array, or IOTA, which was located at Whipple Observatory on Mount Hopkins, Arizona.

“IOTA offered unique capabilities,” said co-author Marc Lacasse of the Harvard-Smithsonian Center for Astrophysics (CfA). “It allowed us to see details in the images which are about 15 times smaller than can be resolved in images from the Hubble Space Telescope.”

The team also acknowledged the usefulness of the many observations contributed annually by amateur astronomers worldwide, which were provided by the American Association of Variable Star Observers (AAVSO).

In the forthcoming decade, the prospect of ultra-sharp imaging enabled by interferometry excites astronomers. Objects that, until now, appeared point-like are progressively revealing their true nature. Stellar surfaces, black hole accretion disks, and planet forming regions surrounding newborn stars all used to be understood primarily through models. Interferometry promises to reveal their true identities and, with them, some surprises.

The new observations of Chi Cygni are reported in the December 10 issue of The Astrophysical Journal.

Source: Harvard-Smithsonian Center for Astrophysics

MESSENGER Team Releases First Global Map of Mercury

The first-ever global mosaic map of Mercury was released today, which will be a critical tool for the MESSENGER mission’s observations of the planet when it enters orbit in 2011. The map was created from images taken during MESSENGER’s three flybys of Mercury – the most recent of which took place in September 2009 — and those of Mariner 10 in the 1970s. “The production of this global mosaic represents a major milestone for everyone on the MESSENGER imaging team,” said Sean Solomon, MESSENGER Principal Investiagor. “Beyond its extremely important use as a planning tool, this global map signifies that MESSENGER is no longer a flyby mission but instead will soon become an in-depth, non-stop global observatory of the Solar System’s innermost planet.”

The map was created by the MESSENGER mission team and cartographic experts from the U. S. Geological Survey. It will help scientists pinpoint craters, faults, and other features for observation.

While creating a mosaic map may seem straightforward – just stitch together multiple images taken by the spacecraft — it was actually quite a challenge to create cartographically accurate maps from images with varying resolution (from about 100 to 900 meters per pixel) and lighting conditions (from noontime high Sun to dawn and dusk) taken from a spacecraft traveling at speeds greater than 2 kilometers per second (2,237 miles per hour).

Small uncertainties in camera pointing and changes in image scale can introduce small errors between frames.

“With lots of images, small errors add up and lead to large mismatches between features in the final mosaic,” said MESSENGER team member Mark Robinson. “By picking control points—the same features in two or more images—the camera pointing can be adjusted until the image boundaries match.”

This operation is known as a bundle-block adjustment and requires highly specialized software. Cartographic experts at the USGS Astrogeology Science Center in Flagstaff, Ariz., picked the control points to solve the bundle-block adjustment to construct the final mosaic using the Integrated Software for Imagers and Spectrometers (ISIS). For the MESSENGER mosaic, 5,301 control points were selected, and each control point on average was found in more than three images (18,834 measurements) from a total of 917 images.

“This mosaic represents the best geodetic map of Mercury’s surface. We want to provide the most accurate map for planning imaging sequences once MESSENGER achieves orbit around Mercury”, said Kris Becker of the USGS. “As the systematic mapping of Mercury’s surface progresses, we will continually add new images to the control point network, thus refining the map”, he says. “It has already provided us with a start in the process of naming newly identified features on the surface.”

In the final bundle-block adjustment the average error was about two-tenths of a pixel or only about 100 meters—which is an excellent match from image-to-image, the team said. Absolute positional errors in the new mosaic are about two kilometers, according to the MESSENGER team. Once the spacecraft enters orbit around Mercury, the team will be able to make even more refinements and the entire planet will be imaged at even higher resolution. The global mosaic is available for download on the USGS Map-a-Planet web site. It is also available at the MESSENGER site.

A presentation on the new global mosaic was given today at the Fall Meeting of the American Geophysical Union in San Francisco.

Source: MESSENGER

Dreamliner Makes First Flight

The next big thing for airliners made its maiden flight today. Boeing’s new 787 Dreamliner jet took off at 10:27 am (1827 GMT) from Paine Field near Boeing’s plant in Washington state in the US. As Boeing’s first new design model in over a decade, it takes advantage of advances in aviation technology and is capable of flying long-haul routes using up to 20 percent less fuel. At two year overdue, the milestone is critical for Boeing at the key to the future of the US aerospace company.
Continue reading “Dreamliner Makes First Flight”

Carnival of Space #133

This week’s Carnival of Space is hosted by Brian Wang over at The Next Big Future

Click here to read the Carnival of Space #133.

And if you’re interested in looking back, here’s an archive to all the past Carnivals of Space. If you’ve got a space-related blog, you should really join the carnival. Just email an entry to [email protected], and the next host will link to it. It will help get awareness out there about your writing, help you meet others in the space community – and community is what blogging is all about. And if you really want to help out, let Fraser know if you can be a host, and he’ll schedule you into the calendar.

Finally, if you run a space-related blog, please post a link to the Carnival of Space. Help us get the word out.