Review: SKYlaser 55 mW Green Laser Pointer

Have you ever been blown away by a laser? I just was! The folks at SKYlasers sent us a 55 mW Green Laser Pointer to try out. I’ve only ever used very small laser pointers before for indoor presentations, so I was completely unprepared for the power of this laser pointer. I literally felt like I could reach out and touch the Moon and stars!

This green laser pointer has a reported range of 80 km (50 miles.) The laser is easily visible in the day time too, well over 30 meters (100 feet,) — and likely even more — even in bright daylight, I discovered (see image at the bottom.)

SKYlaser laser pointers are about the size of a Sharpie pen. There is a clip to easily attach the laser pointer securely to a bag or shirt pocket (or pocket protector!) so it is easy to find when you’re outside and trying to point out a constellation or star to someone else.

The SKYlaser 55 mW laser package.
The SKYlaser 55 mW laser package.

These laser pointers are very easy to use: just put in 2 AAA batteries, push the button and the beam of light zooms out to space — well, not technically, since space is officially 100 km up – but SKYlasers has other higher powered laser pointers that actually do reach that threshold and beyond. But for all amateur or even professional astronomers wanting to point out any object in the night sky, this laser pointer will meet your needs. I’ve been at instructional astronomy viewing nights where the instructor’s laser pointer was difficult to see and it was hard to follow where the instructor was pointing. Not with this one! It produces a powerful beam that you can’t miss seeing!
Laser point keyswitch.  Credit: SKYlasers.
Laser point keyswitch. Credit: SKYlasers.

The 55 mW green laser also has a key feature that can turn off the laser so it won’t turn on accidentally if the button gets pressed while in a pocket or bag. Other more powerful SKYlaser pointers have a key that can dim the beam, so if you do want to use it indoors, it won’t be over-powering.

The 55mW green laser I received retails for $129.99 USD, but SKYlasers has a whole range of green lasers from a 5mW at $39.99 to a 150mW at $299.99. Plus they have even more powerful red laser pointers and the super powerful infrared laser pointers. Some of these are so powerful that they even come with goggles. SKYlasers also has some portable lasers that are beyond what any average person or astronomer would need.

SKYlaser laser pointer at work at night. Photo: N. Atkinson
SKYlaser laser pointer at work at night. Photo: N. Atkinson

I would just like to point out that any of these laser pointers are not toys, so please treat them with all the necessary respect and safety precautions. They can sting skin and hurt your (or others) eyes. The 55 mW laser can burn through a black trashbag (yes, we actually tried this, and the bag started melting in about 15 seconds). Some of the more powerful ones can light matches, burn dark fabrics, etch dark plastics and leathers, light fireworks, or even melt rubber and plastics. Not sure why you’d want to do some of these things, but it points out how powerful they are. Of course, you also need to watch out for planes in the area when you are using them. If you are doing an astronomy activity with a large group where you might be easily distracted, I’d suggest appointing a “spotter” to keep on the lookout for airplanes that might come into the region.

But the SKYlaser green pointer is a great way to be able to share your love of astronomy with your friends and family. It would be a great gift for any astronomy buff.

For more information see the SKYlaser website.

See the green point of light on the tree trunk?  The SKYlaser laser pointer is visible even in the daytime from over 30 meters (100 feet) -- and likely beyond. Photo: N. Atkinson
See the green point of light on the tree trunk? The SKYlaser laser pointer is visible even in the daytime from over 30 meters (100 feet) -- and likely beyond. Photo: N. Atkinson

Deep, Fiery Undersea Volcano Captured on Video

The orange glow of magma is visible on the left of the sulfur-laden plume. The area shown in this image is approximately six feet across in an eruptive area approximately the length of a football field that runs along the summit. (Image courtesy of NSF, NOAA, and WHOI Advanced Imaging and Visualization Lab)

Ever seen fire and smoke under water before? Oceanographers using a remotely operated underwater vehicle discovered and recorded the first video and still images of the deepest underwater volcano actively erupting molten lava on the seafloor. The ROV Jason vehicle captured the powerful event nearly 1.2 km (4,000 feet) below the surface of the Pacific Ocean, in the “Ring of Fire” region, near Fiji, Tonga and Samoa. “It was very exciting. We’ve never seen anything like that on the ocean floor,” said Bob Embley, a marine geologist with NOAA, who described the event an underwater Fourth of July. “When we started to see red flashes of light, everyone was extremely excited. Then we had to get down to the work of actually understanding of what we were seeing.”

The scientists presented their findings, along with HD video at the American Geophysical Union’s fall meetings in San Fransciso. The video was taken in May of 2009, and the science team said the undersea volcano is likely to still be erupting, and may have started activity in late 2008.

[/caption]

Embly said the eruption couldn’t be seen above the water, but there were “water column anomlies which indicated an eruption going on. We knew within a few hundred feet where the eruption was taking place.”

There were actually two erupting regions, but the video shows the most dramatic one. Visible in the video is magma – sometimes fiery, red hot at 1,371 C (2,500 degrees F) – bursting up through the seawater, with fragments of rock being propelled and magma flowing down the slope of the volcano. Hot sulfer “smoke” plumes can also be seen.

The volcano is spewing a type of lava known as Boninite, which until now had only been seen in extinct volcanoes more than a million years old.

A underwater “hydrophone” recorded the sound, and it was synched with the video.

The ROV Jason is designed and operated by the Woods Hole Oceanographic Institution for the National Deep Submergence Facility.

Samples collected near the volcano showed the seawater to be highly acidic, similar to battery or stomach acid, the researchers said. Despite the harsh conditions, scientists found and photographed a species of shrimp apparently thriving near the volcanic vents.

“Nobody would have predicted that things would have survived long enough in water that acidic. It seems like it’s too harsh a condition,” said University of Washington chemical oceanographer Joseph Resing.

They hope to go back in a few months and see all the other creatures that have taken up residence there.

Sources: WHOI, NOAA, NSF, AGU press conference

The Known Universe (Video)

Take a 6 minute tour of the known universe in this video from the American Museum of Natural History. Start on Mt. Everest, and get pulled through the Earth’s atmosphere to glimpse the inky black of space. Then zoom through the solar system and the Milky Way to mysterious quasars and supernovae, all the way back to the to the afterglow of the Big Bang. The Known Universe is based on precise, scientifically-accurate observations and research.
Continue reading “The Known Universe (Video)”

Latest Buzz: NASA to Get Bigger Budget and New Launcher

OK, I guess I was wrong yesterday when I said nothing happened during the meeting between President Obama and NASA Administrator Charlie Bolden. Science Magazine has now published this:

President Barack Obama will ask Congress next year to fund a new heavy-lift launcher to take humans to the moon, asteroids, and the moons of Mars, ScienceInsider has learned. The president chose the new direction for the U.S. human space flight program Wednesday at a White House meeting with NASA Administrator Charles Bolden, according to officials familiar with the discussion. NASA would receive an additional $1 billion in 2011 both to get the new launcher on track and to bolster the agency’s fleet of robotic Earth-monitoring spacecraft.


If this is true, it would mean Ares would be scrapped for another, simpler heavy-lift vehicle that could be ready to fly as early as 2018. Science News also said that European countries, Japan, and Canada would be asked to work on a lunar lander and modules for a moon base, saving the U.S. several billion dollars, and commercial companies would take over the job of getting supplies to the international space station.

So, what about the “flexible path” suggested by the Augustine Commission? If this plan is implemented, U.S. partners focus on lunar exploration, and NASA — while helping out with the Moon missions, might also focus on missions to asteroids and Phobos and Deimos to prepare for a later human landing on the Red Planet in the distant future. To prepare for human visits, NASA may order additional robotic missions to the martian moons and asteroids in coming years.

Nothing’s official yet; we’ll have to wait and see what actually transpires….

Read Science Magazine’s ScienceInsider for the whole story.

What’s your opinion on this possible turn of events?

Shapes Reveal Supernovae History

These two supernova remnants are part of a new study from NASA’s Chandra X-ray Observatory that shows how the shape of the remnant is connected to the way the progenitor star exploded. Credit: NASA/CXC/UCSC/L. Lopez et al.)

At a very early age, children learn how to classify objects according to their shape. Now, new research suggests studying the shape of the aftermath of supernovas may allow astronomers to do the same. Images of supernova remnants taken by the Chandra X-ray Observatory shows that the symmetry of the debris from exploded stars, or lack thereof, reveals how the star exploded. This is an important discovery because it shows that the remnants retain information about how the star exploded even though hundreds or thousands of years have passed.

“It’s almost like the supernova remnants have a ‘memory’ of the original explosion,” said Laura Lopez of the University of California at Santa Cruz, who led the study. “This is the first time anyone has systematically compared the shape of these remnants in X-rays in this way.”

Astronomers sort supernovas into several categories, or “types”, based on properties observed days after the explosion and which reflect very different physical mechanisms that cause stars to explode. But, since observed remnants of supernovas are leftover from explosions that occurred long ago, other methods are needed to accurately classify the original supernovas.

Lopez and colleagues focused on the relatively young supernova remnants that exhibited strong X-ray emission from silicon ejected by the explosion so as to rule out the effects of interstellar matter surrounding the explosion. Their analysis showed that the X-ray images of the ejecta can be used to identify the way the star exploded. The team studied 17 supernova remnants both in the Milky Way galaxy and a neighboring galaxy, the Large Magellanic Cloud.

Chandra X-ray Image of SNR 0548-70.4  (Credit: NASA/CXC/UCSC/L. Lopez et al.)
Chandra X-ray Image of SNR 0548-70.4 (Credit: NASA/CXC/UCSC/L. Lopez et al.)

For each of these remnants there is independent information about the type of supernova involved, based not on the shape of the remnant but, for example, on the elements observed in it. The researchers found that one type of supernova explosion – the so-called Type Ia – left behind relatively symmetric, circular remnants. This type of supernova is thought to be caused by a thermonuclear explosion of a white dwarf, and is often used by astronomers as “standard candles” for measuring cosmic distances.

On the other hand, the remnants tied to the “core-collapse” supernova explosions were distinctly more asymmetric. This type of supernova occurs when a very massive, young star collapses onto itself and then explodes.

“If we can link supernova remnants with the type of explosion”, said co-author Enrico Ramirez-Ruiz, also of University of California, Santa Cruz, “then we can use that information in theoretical models to really help us nail down the details of how the supernovas went off.”

Models of core-collapse supernovas must include a way to reproduce the asymmetries measured in this work and models of Type Ia supernovas must produce the symmetric, circular remnants that have been observed.

Out of the 17 supernova remnants sampled, ten were classified as the core-collapse variety, while the remaining seven of them were classified as Type Ia. One of these, a remnant known as SNR 0548-70.4, was a bit of an “oddball”. This one was considered a Type Ia based on its chemical abundances, but Lopez finds it has the asymmetry of a core-collapse remnant.

“We do have one mysterious object, but we think that is probably a Type Ia with an unusual orientation to our line of sight,” said Lopez. “But we’ll definitely be looking at that one again.”

While the supernova remnants in the Lopez sample were taken from the Milky Way and its close neighbor, it is possible this technique could be extended to remnants at even greater distances. For example, large, bright supernova remnants in the galaxy M33 could be included in future studies to determine the types of supernova that generated them.

The paper describing these results appeared in the November 20 issue of The Astrophysical Journal Letters.

Source: Chandra

Earth’s Upper Atmosphere is Cooling

New measurements from a NASA satellite show a dramatic cooling in the upper atmosphere that correlates with the declining activity of the current solar cycle. For the first time, researchers can show a timely link between the Sun and the climate of Earth’s thermosphere, the region above 100 km, an essential step in making accurate predictions of climate change in the high atmosphere. This finding also correlates with a fundamental prediction of climate change theory that says the upper atmosphere will cool in response to increasing carbon dioxide.

Earth’s thermosphere and mesosphere have been the least explored regions of the atmosphere, in fact some have called it the “ignorosphere.” The NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission was developed to explore the Earth’s atmosphere above 60 km altitude and was launched in December 2001. One of four instruments on the TIMED mission, the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, was specifically designed to measure the energy budget of the mesosphere and lower thermosphere. The SABER dataset now covers eight years of data and has already provided some basic insight into the heat budget of the thermosphere on a variety of timescales.

The extent of current solar minimum conditions has created a unique situation for recent SABER datasets. The end of solar cycle 23 has offered an opportunity to study the radiative cooling in the thermosphere under exceptionally quiescent conditions.

“The Sun is in a very unusual period,” said Marty Mlynczak, SABER associate principal investigator and senior research scientist at NASA Langley. “The Earth’s thermosphere is responding remarkably — up to an order of magnitude decrease in infrared emission/radiative cooling by some molecules.”

The TIMED measurements show a decrease in the amount of ultraviolet radiation emitted by the Sun. In addition, the amount of infrared radiation emitted from the upper atmosphere by nitric oxide molecules has decreased by nearly a factor of 10 since early 2002. These observations imply that the upper atmosphere has cooled substantially since then. The research team expects the atmosphere to heat up again as solar activity starts to pick up in the next year.

While this warming has no implications for climate change in the troposphere, a fundamental prediction of climate change theory is that the upper atmosphere will cool in response to increasing carbon dioxide. Emissions of carbon dioxide may warm the lower atmosphere, but they cool the upper atmosphere, because of the density of the atmospheric layer.

As the atmosphere cools the density will increase, which ultimately may impact satellite operations through increased drag over time.

The SABER dataset is the first global, long-term, and continuous record of the Nitric oxide (NO) and Carbon dioxide (CO2) emissions from the thermosphere.

“We suggest that the dataset of radiative cooling of the thermosphere by NO and CO2 constitutes a first climate data record for the thermosphere,” says Mlynczak.

The TIMED data provide a fundamental climate data record for validation of upper atmosphere climate models which is an essential step in making accurate predictions of climate change in the high atmosphere. SABER provides the first long-term measurements of natural variability in key terms of the upper atmosphere climate. As the TIMED mission continues, these data derived from SABER will become important in assessing long term changes due to the increase of carbon dioxide in the atmosphere.

The findings were presented at the American Geophysical Union fall meeting in San Francisco.

Source: NASA Langley

Cassini Captures Sunshine Gleaming off Lake on Titan


This image shows the first flash of sunlight reflected off a lake on Saturn’s moon Titan. Credit: NASA/JPL

Dear friend,
Ah, yes. Another gorgeous day here in the northern lake district. It warmed up to about 94 K (-179 °C, or -290 °F) and we sat and enjoyed the sunshine gleaming off the liquid lakes here on Titan. Wish you were here!

Liquid lakes? Gleaming sunshine? Titan?

Yes, it’s all true. The Cassini Spacecraft has captured the first flash of sunlight reflected off a lake on Saturn’s moon Titan, confirming the presence of liquid on the part of the moon dotted with many large, lake-shaped basins.

Cassini scientists had been looking for the glint, also known as a specular reflection, since the spacecraft began orbiting Saturn in 2004. But Titan’s northern hemisphere, which has more lakes than the southern hemisphere, has been veiled in winter darkness. The sun only began to directly illuminate the northern lakes recently as it approached the equinox of August 2008, the start of spring in the northern hemisphere. Titan’s hazy atmosphere also blocked out reflections of sunlight in most wavelengths. This serendipitous image was captured on July 8, 2009, using Cassini’s visual and infrared mapping spectrometer.

This image is being presented at the fall meeting of the American Geophysical Union in San Francisco.

“This one image communicates so much about Titan — thick atmosphere, surface lakes and an otherworldliness,” said Bob Pappalardo, Cassini project scientist, based at NASA’s Jet Propulsion Laboratory, Pasadena, Calif. “It’s an unsettling combination of strangeness yet similarity to Earth. This picture is one of Cassini’s iconic images.”

Titan, Saturn’s largest moon, has captivated scientists because of its many similarities to Earth. Scientists have theorized for 20 years that Titan’s cold surface hosts seas or lakes of liquid hydrocarbons, making it the only other planetary body besides Earth believed to harbor liquid on its surface. While data from Cassini have not indicated any vast seas, they have revealed large lakes near Titan’s north and south poles.

In 2008, Cassini scientists using infrared data confirmed the presence of liquid in Ontario Lacus, the largest lake in Titan’s southern hemisphere. But they were still looking for the smoking gun to confirm liquid in the northern hemisphere, where lakes are also larger.

Katrin Stephan, of the German Aerospace Center (DLR) in Berlin, an associate member of the Cassini visual and infrared mapping spectrometer team, was processing the initial image and was the first to see the glint on July 10th.

“I was instantly excited because the glint reminded me of an image of our own planet taken from orbit around Earth, showing a reflection of sunlight on an ocean,” Stephan said. “But we also had to do more work to make sure the glint we were seeing wasn’t lightning or an erupting volcano.”

Team members at the University of Arizona, Tucson, processed the image further, and scientists were able to compare the new image to radar and near-infrared-light images acquired from 2006 to 2008.

They were able to correlate the reflection to the southern shoreline of a lake called Kraken Mare. The sprawling Kraken Mare covers about 400,000 square kilometers (150,000 square miles), an area larger than the Caspian Sea, the largest lake on Earth. It is located around 71 degrees north latitude and 337 degrees west latitude.

The finding shows that the shoreline of Kraken Mare has been stable over the last three years and that Titan has an ongoing hydrological cycle that brings liquids to the surface, said Ralf Jaumann, a visual and infrared mapping spectrometer team member who leads the scientists at the DLR who work on Cassini. Of course, in this case, the liquid in the hydrological cycle is methane rather than water, as it is on Earth.

“These results remind us how unique Titan is in the solar system,” Jaumann said. “But they also show us that liquid has a universal power to shape geological surfaces in the same way, no matter what the liquid is.”

Source: JPL

Colliding Auroras Create Explosions

his is a locations and field of view map of the twenty all-sky imagers used in support of the THEMIS mission. Twenty all-sky imagers (ASIs) were deployed by researchers from the University of California Berkeley, the University of Calgary, and the University of Alaska in support of the THEMIS mission. Credit: THEMIS/UC Berkeley
Colliding auroras photographed by THEMIS all-sky imagers (ASIs) on Feb. 29, 2008. Credit: Toshi Nishimura/UCLA

Scientists recently discovered something about auroras they never knew before. “Our jaws dropped when we saw the movies for the first time,” said Larry Lyons of the University of California-Los Angeles,(UCLA) describing how sometimes, vast curtains of aurora borealis collide, producing spectacular outbursts of light. “These outbursts are telling us something very fundamental about the nature of auroras.” These collisions can be so large, that isolated observers on Earth — with limited fields of view — have never noticed them before. It took a network of sensitive cameras spread across thousands of miles to get the big picture.

[/caption]
This network of 20 cameras, set up by NASA and the Canadian Space Agency was deployed around the Arctic in support of the THEMIS mission, the “Time History of Events and Macroscale Interactions during Substorms.” THEMIS consists of five identical probes launched in 2006 to solve a long-standing mystery: Why do auroras occasionally erupt in an explosion of light called a substorm?

The cameras would photograph auroras from below while the spacecraft sampled charged particles and electromagnetic fields from above. Together, the on-ground cameras and spacecraft would see the action from both sides and be able to piece together cause and effect—or so researchers hoped. It seems to have worked.

This three frame animation of THEMIS/ASI images shows auroras colliding on Feb. 29, 2008.  Credit: Toshi Nishimura/UCLA
This three frame animation of THEMIS/ASI images shows auroras colliding on Feb. 29, 2008. Credit: Toshi Nishimura/UCLA

The breakthrough came earlier this year when UCLA researcher Toshi Nishimura assembled continent-wide movies from the individual ASI cameras. “It can be a little tricky,” Nishimura said. “Each camera has its own local weather and lighting conditions, and the auroras are different distances from each camera. I’ve got to account for these factors for six or more cameras simultaneously to make a coherent, large-scale movie.”

The first movie he showed Lyons was a pair of auroras crashing together in Dec. 2007. “It was like nothing I had seen before,” Lyons recalled. “Over the next several days, we surveyed more events. Our excitement mounted as we became convinced that the collisions were happening over and over.”

A schematic diagram of Earth's magnetosphere. Earth is the circle near the middle and the plasma tail is denoted in yellow. Credit: Larry Lyons/UCLA
A schematic diagram of Earth's magnetosphere. Earth is the circle near the middle and the plasma tail is denoted in yellow. Credit: Larry Lyons/UCLA

The explosions of light, they believe, are a sign of something dramatic happening in the space around Earth—specifically, in Earth’s “plasma tail.” Millions of kilometers long and pointed away from the sun, the plasma tail is made of charged particles captured mainly from the solar wind. Sometimes called the “plasma sheet,” the tail is held together by Earth’s magnetic field.

The same magnetic field that holds the tail together also connects it to Earth’s polar regions. Because of this connection, watching the dance of Northern Lights can reveal much about what’s happening in the plasma tail.

THEMIS project scientist Dave Sibeck of NASA’s Goddard Space Flight Center, Greenbelt, Md. said, “By putting together data from ground-based cameras, ground-based radar, and the THEMIS spacecraft, we now have a nearly complete picture of what causes explosive auroral substorms,”

Lyons and Nishimura have identified a common sequence of events. It begins with a broad curtain of slow-moving auroras and a smaller knot of fast-moving auroras, initially far apart. The slow curtain quietly hangs in place, almost immobile, when the speedy knot rushes in from the north. The auroras collide and an eruption of light ensues.

How does this sequence connect to events in the plasma tail? Lyons believes the fast-moving knot is associated with a stream of relatively lightweight plasma jetting through the tail. The stream gets started in the outer regions of the plasma tail and moves rapidly inward toward Earth. The fast knot of auroras moves in synch with this stream.

Meanwhile, the broad curtain of auroras is connected to the stationary inner boundary of the plasma tail and fueled by plasma instabilities there. When the lightweight stream reaches the inner boundary of the plasma tail, there is an eruption of plasma waves and instabilities. This collision of plasma is mirrored by a collision of auroras over the poles.

Movies of the phenomenon were unveiled at the Fall Meeting of the American Geophysical Union today in San Francisco.

Sources: EurekAlert, Science@NASA

Obama and Bolden Meet. So What Happened?

US President Barack Obama’s met with NASA administrator Charlie Bolden on Wednesday at the White House. What happened? Not much, as far as anyone can tell. The meeting was short, and no real details have emerged of what might have been discussed or decided. “The two spoke about the Administrator’s work at NASA and they also discussed the Augustine Committee’s analysis,” a White House spokesman told Florida Today. “The President confirmed his commitment to human space exploration, and the goal of ensuring that the nation is on a sustainable path to achieving our aspirations in space.”

The Hunstville Times reported that the two also discussed options for how the country might improve its future human spaceflight activities.

So, no announcement on what “path” NASA will take as a result of the Augustine Commission, or if the Constellation program is staying or going.

While earlier this week, there was hope that Wednesday’s meeting might result in an announcement of NASA’s future, now there are hints that perhaps such an announcement might be part of the State of the Union Address in January, or perhaps a statement regarding the President’s decisions on NASA won’t come until sometime in February.

The U.S. Senate approved a budget of $18.7 billion that the President needs to make a decision on. But The Orlando Sentinel reported that also on Wednesday, Bolden told lawmakers and Congressional staff that the White House was now favoring a $1 billion top line increase to NASA’s budget in 2011. This would be far better than the 5 percent cut that all agencies, including NASA, were asked by the White House to prepare, but difficult to secure given the current deficit-cutting mindset in Congress.

Space Politics also reported on that on Wednesday, unfortunately, Speaker of the House Nancy Pelosi said she was not a “big fan” of human spaceflight. “I have not been a big fan of manned expeditions to outer space, in terms of safety and cost,” she said. “But people could make the case; technology is always changing.”
Any additional spending for NASA, she said, would have to be evaluated against other programs, and “a judgment will be made as to what it does in terms of job creation.” She added that while human missions to the Moon “would be fine” but appeared to be more skeptical about “personned” missions to Mars.

So for now, we wait. Some more.

Sources: Florida Today, Huntsville Times, Space Politics