Supermassive Black Holes can Turn Star Formation On and Off in a Large Galaxy

Colour composite image of Centaurus A, revealing the lobes and jets emanating from the active galaxy’s central black hole. Credit: ESO/NASA/CXC/CfA/WFI/MPIfR/APEX/A.Weiss et al./R.Kraft et al.

In the 1970s, astronomers discovered that a particularly large black hole (Sagittarius A*) existed at the center of our galaxy. In time, they came to understand that similar Supermassive Black Holes (SMBHs) existed in the center of most massive galaxies. The presence of these black holes was also what differentiated galaxies that had particularly luminous cores – aka. Active Galactic Nuclei (AGN) – from those that didn’t.

Since that time, astronomers and cosmologists have pondered what role SMBHs have on galactic evolution, with some venturing that they have a profound impact on star formation. And thanks to a recent study by an international team of astronomers, there is now direct evidence for a correlation between and SMBH and a galaxy’s star formation. In fact, the team demonstrated that a black hole’s mass could determine when star formation in a galaxy will end.

The study, titled “Black-Hole-Regulated Star Formation in Massive Galaxies“, recently appeared in the scientific journal Nature. Led by Ignacio Martín-Navarro, a Marie Curie Fellow at the University of California Observatories, the study team also consisted of members from the Max-Planck Institute for Astronomy and the Instituto de Astrofísica de Canarias.

The primary mirror of the Hobby-Eberly Telescope (HET) at McDonald Observatory. The mirror is made up of 91 segments, and has an effective aperture of 9.2 meters. Credit: Marty Harris/McDonald Observatory

For the sake of their study, the team relied on data gathered the Hobby-Eberle Telescope Massive Galaxy Survey in 2015. This systematic survey used the 10m Hobby-Eberly Telescope (HET) at the McDonald Observatory to conduct an optical long-slit spectroscopic survey of over 1000 galaxies. This survey not only provided spectra for these galaxies, but also produced direct mass measurements of the central black holes for 74 of these galaxies.

Using this data, Martín-Navarro and his colleagues found the first observational evidence for a direct correlation between the mass of a galaxy’s central black hole and its history of star formation. While astrophysicists have been operating under this assumption for decades, the proof was missing until now. As Jean Brodie, professor of astronomy and astrophysics at UC Santa Cruz and a coauthor of the paper, said in a UCSC press release:

“We’ve been dialing in the feedback to make the simulations work out, without really knowing how it happens. This is the first direct observational evidence where we can see the effect of the black hole on the star formation history of the galaxy.”

Roughly 15 years ago, the correlation between a SMBHs mass and the total mass of a galaxy’s stars was discovered, which led to a major unresolved question in astrophysical circles. While this correlation appeared to be a central feature of galaxies, it was unclear as to what could have caused it. How could the mass of a comparatively small and central black hole be related to the mass of billions of stars distributed throughout a galaxy?

The galaxy NGC 660 – in this and other galaxies, the rate at which new stars are formed appears to be linked to the evolution of the galaxy’s central black hole. Credit: ESA/Hubble/NASA

One possible explanation was that more massive galaxies collected larger amounts of gas, thus resulting in more stars and a more massive central black hole. However, astrophysicists also believed their was a feedback mechanism at work, where growing black holes inhibited the formation of stars in their vicinity. In short, when matter accretes on a central black hole, it sends out a tremendous amount of energy in the form of radiation and particle jets.

If this energy is transferred to gas and dust surrounding the core of the galaxy, stars will be less likely to form in this region since gas and dust need to be cold in order to undergo areas of collapse. For years, feedback of this kind has been included in cosmological simulations to explain the observed star-formation rates in galaxies. According to these same simulations, minus this mechanism, galaxies would form far more stars than have been observed.

However, no direct evidence of this phenomena had previously been available. The first step to obtaining some was to reproduce the stellar formation histories of the 74 target galaxies used for the study. Martín-Navarro and his colleagues did this by subjecting spectra obtained from each of these galaxies to computational techniques that looked for the best combination of stellar populations to fit the data.

In so doing, the team was able to reconstruct the history of star formation within the target galaxies for the past 12.5 billion years. After examining these histories, they noticed some predictable results, but also some rather significant differences. For starters, as predicted, the regions of around the galaxies’ central black holes demonstrated a clear dampening influence on the rate of star formation.

Artist’s concept of the most distant supermassive black hole ever discovered. It is part of a quasar from just 690 million years after the Big Bang. Credit: Robin Dienel/Carnegie Institution for Science

As predicted, there was also a clear correlation between the mass of the central black holes and stellar mass in these galaxies. However, the team also noted that in cases where stellar mass was slightly smaller than expected (relative to the mass of their central black holes), star formation rates were lower. In some other cases, galaxies had larger-than-expected stellar masses (again, relative to their black holes) and their star formation rates were higher.

This correlation was not only more consistent than that observed between black hole mass and stellar mass, it occurred independently of other factors (such as shape or density). As Martín-Navaro explained:

“For galaxies with the same mass of stars but different black hole mass in the center, those galaxies with bigger black holes were quenched earlier and faster than those with smaller black holes. So star formation lasted longer in those galaxies with smaller central black holes.”

They also noted that this correlation extends into the deep past, where the galaxies with supermassive central black holes have been consistently producing a comparatively low rate of stars for the past 12.5 billion years. This constitutes the first strong evidence for a direct, long-term connection between star formation and the existence of a central black hole in a galaxy.

Close-up of star near a supermassive black hole (artist’s impression). Credit: ESA/Hubble, ESO, M. Kornmesser

Another interesting takeaway from the study was the way it addressed possible correlations between AGN luminosity and star formation. In the past, other researchers have sought to find evidence of a link between the two, but without success. According to Martín-Navarro and his team, this may be because the time scales are incredibly different. Whereas star formation occurs over the course of eons, outbursts from AGNs occur over shorter intervals.

What’s more, AGNs are highly variable and their properties are dependent on a number of factors relating to their black holes – i.e. size, mass, rate of accretion, etc. We used black hole mass as a proxy for the energy put into the galaxy by the AGN, because accretion onto more massive black holes leads to more energetic feedback from active galactic nuclei, which would quench star formation faster,” said Martin-Navarro.

Looking ahead, the team hopes to conduct further research and determine exactly how central black holes arrest star formation. At present, the possibility that it could be due to radiation or jets of gas heating up surrounding matter are not definitive. As Aaron Romanowsky, an astronomer at San Jose State University and UC Observatories, indicated:

“There are different ways a black hole can put energy out into the galaxy, and theorists have all kinds of ideas about how quenching happens, but there’s more work to be done to fit these new observations into the models.”

Part of determining how the Universe came to be is knowing what mechanisms were at play and the extent of their roles. With this latest study, astrophysicists and cosmologists can take comfort in the knowledge that they’ve been getting it right – at least in this case!

Further Reading: UCSC, MPIA, Nature

What is the Gravitational Microlensing Method?

Hubble image of a luminous red galaxy (LRG) gravitationally distorting the light from a much more distant blue galaxy, a technique known as gravitational lensing. The shape of the galaxy doing the lensing created an almost circular image. An oblong galaxy would create more of an Einstein Ring effect. Credit: ESA/Hubble & NASA
Hubble image of a luminous red galaxy (LRG) gravitationally distorting the light from a much more distant blue galaxy, a technique known as gravitational lensing. The shape of the galaxy doing the lensing created an almost circular image. An oblong galaxy would create more of an Einstein Ring effect. Credit: ESA/Hubble & NASA

Welcome back to our series on Exoplanet-Hunting methods! Today, we look at the curious and unique method known as Gravitational Microlensing.

The hunt for extra-solar planets sure has heated up in the past decade. Thanks to improvements made in technology and methodology, the number of exoplanets that have been observed (as of December 1st, 2017) has reached 3,710 planets in 2,780 star systems, with 621 system boasting multiple planets. Unfortunately, due to various limits astronomers are forced to contend with, the vast majority have been discovered using indirect methods.

One of the more commonly-used methods for indirectly detecting exoplanets is known as Gravitational Microlensing. Essentially, this method relies on the gravitational force of distant objects to bend and focus light coming from a star. As a planet passes in front of the star relative to the observer (i.e. makes a transit), the light dips measurably, which can then be used to determine the presence of a planet.

In this respect, Gravitational Microlensing is a scaled-down version of Gravitational Lensing, where an intervening object (like a galaxy cluster) is used to focus light coming from a galaxy or other object located beyond it. It also incorporates a key element of the highly-effective Transit Method, where stars are monitored for dips in brightness to indicate the presence of an exoplanet.

Description:

In accordance with Einstein’s Theory of General Relativity, gravity causes the fabric of spacetime to bend. This effect can cause light affected by an object’s gravity to become distorted or bent. It can also act as a lens, causing light to become more focused and making distant objects (like stars) appear brighter to an observer. This effect occurs only when the two stars are almost exactly aligned relative to the observer (i.e. one positioned in front of the other).

These “lensing events” are brief, but plentiful, as Earth and stars in our galaxy are always moving relative to each other. In the past decade, over one thousand such events have been observed, and typically lasted for a few days or weeks at a time. In fact, this effect was used by Sir Arthur Eddington in 1919 to provide the first empirical evidence for General Relativity.

This took place during the solar eclipse of May 29th, 1919, where Eddington and a scientific expedition traveled to the island of Principe off the coast of West Africa to take pictures of the stars that were now visible in the region around the Sun. The pictures confirmed Einstein’s prediction by showing how light from these stars was shifted slightly in response to the Sun’s gravitational field.

The technique was originally proposed by astronomers Shude Mao and Bohdan Paczynski in 1991 as a means of looking for binary companions to stars. Their proposal was refined by Andy Gould and Abraham Loeb in 1992 as a method of detecting exoplanets. This method is most effective when looking for planets towards the center of the galaxy, as the galactic bulge provides a large number of background stars.

A sketch of a microlensing signature with a planet in the lens system. Image Credit: NASA / ESA / K. Sahu / STScI

Advantages:

Microlensing is the only known method capable of discovering planets at truly great distances from the Earth and is capable of finding the smallest of exoplanets. Whereas the Radial Velocity Method is effective when looking for planets up to 100 light years from Earth and Transit Photometry can detect planets hundreds of light-years away, microlensing can find planets that are thousands of light-years away.

While most other methods have a detection bias towards smaller planets, the microlensing method is the most sensitive means of detecting planets that are around 1-10 astronomical units (AU) away from Sun-like stars. Microlensing is also the only proven means of detecting low-mass planets in wider orbits, where both the transit method and radial velocity are ineffective.

Taken together, these benefits make microlensing the most effective method for finding Earth-like planets around Sun-like stars. In addition, microlensing surveys can be effectively mounted using ground-based facilities. Like Transit Photometry, the Microlensing Method benefits from the fact that it can be used to survey tens of thousands of stars simultaneously.

Disadvantages:

Because microlensing events are unique and not subject to repeat, any planets detected using this method will not be observable again. In addition, those planets that are detected tend to be very far way, which makes follow-up investigations virtually impossible. Luckily, microlensing detections generally do not require follow-up surveys since they have a very high signal-to-noise ratio.

While confirmation is not necessary, some planetary microlensing events have been confirmed. The planetary signal for event OGLE-2005-BLG-169 was confirmed by HST and Keck observations (Bennett et al. 2015; Batista et al. 2015). In addition, microlensing surveys can only produce rough estimations of a planet’s distance, leaving significant margins for error.

Microlensing is also unable to yield accurate estimates of a planet’s orbital properties, since the only orbital characteristic that can be directly determined with this method is the planet’s current semi-major axis. As such, planet’s with an eccentric orbit will only be detectable for a tiny portion of its orbit (when it is far away from its star).

Finally, microlensing is dependent on rare and random events – the passage of one star precisely in front of another, as seen from Earth – which makes detections both rare and unpredictable.

Examples of Gravitational Microlensing Surveys:

Surveys that rely on the Microlensing Method include the Optical Gravitational Lensing Experiment (OGLE) at the University of Warsaw. Led by Andrzej Udalski, the director of the University’s Astronomical Observatory, this international project uses the 1.3 meter “Warsaw” telescope at Las Campanas, Chile, to search for microlensing events in a field of 100 stars around the galactic bulge.

The Astronomical Observatory at the University of Warsaw, used to conduct the OGLE project. Credit: ogle.astrouw.edu.pl

There is also the Microlensing Observations in Astrophysics (MOA) group, a collaborative effort between researchers in New Zealand and Japan. Led by Professor Yasushi Muraki of Nagoya University, this group uses the Microlensing Method to conduct surveys for dark matter, extra-solar planets, and stellar atmospheres from the southern hemisphere.

And then there’s the Probing Lensing Anomalies NETwork (PLANET), which consists of five 1-meter telescopes distributed around the southern hemisphere. In collaboration with RoboNet, this project is able to provide near-continuous observations for microlensing events caused by planets with masses as low as Earth’s.

The most sensitive survey to date is the Korean Microlensing Telescope Network (KMTNet), a project initiated by the Korea Astronomy and Space Science Institute (KASI) in 2009. KMTNet relies on the instruments at three southern observatories to provide 24-hour continuous monitoring of the Galactic bulge, searching for microlensing events that will point the way towards earth-mass planets orbiting with their stars habitable zones.

We have written many interesting articles on exoplanet detection here at Universe Today. Here is What are Extra Solar Planets?, What is the Transit Method?, What is the Radial Velocity Method?, What is Gravitational Lensing? and Kepler’s Universe: More Planets in our Galaxy than Stars

For more information, be sure to check out NASA’s page on Exoplanet Exploration, the Planetary Society’s page on Extrasolar Planets, and the NASA/Caltech Exoplanet Archive.

Astronomy Cast also has relevant episodes on the subject. Here’s Episode 208: The Spitzer Space Telescope, Episode 337: Photometry, Episode 364: The CoRoT Mission, and Episode 367: Spitzer Does Exoplanets.

Sources:

In Preparation for its Inaugural Launch, the Falcon Heavy Receives its Special Cargo – Musk’s Tesla Roadster!

Elon Musk's Tesla Roadster being loaded aboard the Falcon Heavy's payload capsule. Credit: SpaceX

After years of preparation, SpaceX is gearing up for the inaugural launch of its Falcon Heavy rocket. As the name would suggest, this rocket is the heaviest launch vehicle in the SpaceX arsenal. With a payload capacity of 54 metric tons (119,000 lbs), it can lift over twice as much weight of the next heaviest launch vehicle (the ULA’s Delta IV Heavy). And in time, SpaceX hopes to use this rocket to send astronauts into orbit, to the Moon, and on to Mars.

Basically, the Falcon Heavy is integral to SpaceX’s mission to usher in an age of affordable space travel and restoring domestic launch capability to the United States. With the inaugural launch scheduled to take place no earlier than January of 2018, the company is currently putting the final touches on the rocket. This includes releasing pictures of the payload which will be sent into space, which is none other than Elon Musk’s own cherry-red Tesla Roadster.

The inaugural launch will take place at SpaceX’s Launch Complex 39A, which is located at the Kennedy Space Center in Florida. This same launch pad was where the historic Apollo 11 mission launched from on July 16th, 1969, sending the first astronauts to the Moon. After it launches, the rocket will send send a payload into a heliocentric solar orbit, which will put it at a distance that is about the same as Mars’ distance from the Sun.

In addition, the company will use this inaugural launch to attempt a landing of all three of the Falcon 9 engine cores, which make up the first stage of the Falcon Heavy. In the past, the company has demonstrated its ability to successfully land the first stages of Falcon 9 rockets on land and at sea. However, this will be the first time that multiple cores are recovered from a single launch.

It will also demonstrate that SpaceX is capable of reusing all stages of a heavy launch, bringing it a step closer to fulfilling its promise to reduce costs by developing fully-reusable rockets. Two of the rocket cores will land at Cape Canaveral Air Force Station while the third will land on SpaceX’s drone ship (Of Course I Still Love You) out in the Atlantic Ocean.

NASA is also offering offering viewing opportunities of the launch to the public at the Kennedy Space Center Visitor Complex. In the past, Musk has proposed sending some truly odd things into space, including a wheel of cheese. On December 1st of this year, Musk tweeted that for this momentous occasion, the special cargo would be one of his very own electric cars. As he posted on Twitter:

The Tesla Roadster being loaded into the payload fairing. Credit: SpaceX

Last week, SpaceX released photos of the Tesla Roadster being loaded aboard the rocket’s payload fairing. Forthe purposes of launching it into space, the Roadster has been mounted on a special adapter structure, which are typically used when launching satellites into orbit. The photos also showed the Roadster being enclosed inside the rocket’s payload fairing, which will carry the car into space and place it at its heliocentric orbit.

Musk naturally avoided making any predictions about the launch, saying only that the launch was “Guaranteed to be exciting, one way or another.” However, when asked about his choice of cargo, Musk was both candid and cheeky in his response, tweeting:

“I love the thought of a car drifting apparently endlessly through space and perhaps being discovered by an alien race millions of years in the future.”

One can only imagine what they will conclude about humans. Perhaps that they were are both environmentally friendly and pretty flashy! While the exact date of the launch is still yet to be determined, Musk is certainly correct in predicting that it will be an exciting event. Given the sheer significance of this flight, the eyes of the world will be firmly fixed on Launch Complex 39A when it does take place.

Good luck SpaceX! And good luck to you too little Roadster!

Further Reading: Kennedy Space Center, Spaceflight Now, SpaceX

Mysterious Filament is Stretching Down Towards the Milky Way’s Supermassive Black Hole

A radio image from the NSF’s Karl G. Jansky Very Large Array showing the center of our galaxy. The mysterious radio filament is the curved line located near the center of the image, & the supermassive black hole Sagittarius A* (Sgr A*), is shown by the bright source near the bottom of the image. Credit: NSF/VLA/UCLA/M. Morris et al.

The core of the Milky Way Galaxy has always been a source of mystery and fascination to astronomers. This is due in part to the fact that our Solar System is embedded within the disk of the Milky Way – the flattened region that extends outwards from the core. This has made seeing into the bulge at the center of our galaxy rather difficult. Nevertheless, what we’ve been able to learn over the years has proven to be immensely interesting.

For instance, in the 1970s, astronomers became aware of the Supermassive Black Hole (SMBH) at the center of our galaxy, known as Sagittarius A* (Sgr A*). In 2016, astronomers also noticed a curved filament that appeared to be extending from Sgr A*. Using a pioneering technique, a team of astronomers from the Harvard-Smithsonian Center for Astrophysics (CfA) recently produced the highest-quality images of this structure to date.

The study which details their findings, titled “A Nonthermal Radio Filament Connected to the Galactic Black Hole?“, recently appeared in The Astrophysical Journal Letters. In it, the team describes how they used the National Radio Astronomy Observatory’s (NRAO) Very Large Array to investigate the non-thermal radio filament (NTF) near Sagittarius A* – now known as the Sgr A West Filament (SgrAWF).

Detection of an unusually bright X-Ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy. Credit: NASA/CXC/Stanford/I. Zhuravleva et al.

As Mark Morris – a professor of astronomy at the UCLA and the lead authority the study – explained in a CfA press release:

“With our improved image, we can now follow this filament much closer to the Galaxy’s central black hole, and it is now close enough to indicate to us that it must originate there. However, we still have more work to do to find out what the true nature of this filament is.”

After examining the filament, the research team came up with three possible explanations for its existence. The first is that the filament is the result of inflowing gas, which would produce a rotating, vertical tower of magnetic field as it approaches and threads Sgr A*’s event horizon. Within this tower, particles would produce radio emissions as they are accelerated and spiral in around magnetic field lines extending from the black hole.

The second possibility is that the filament is a theoretical object known as a cosmic string. These are basically long, extremely thin cosmic structures that carry mass and electric currents that are hypothesized to migrate from the centers of galaxies. In this case, the string could have been captured by Sgr A* once it came too close and a portion crossed its event horizon.

The third and final possibility is that there is no real association between the filament and Sgr A* and the positioning and direction it has shown is merely coincidental. This would imply that there are many such filaments in the Universe and this one just happened to be found near the center of our galaxy. However, the team is confident that such a coincidence is highly unlikely.

Labelled image of the center of our galaxy, showing the mysterious radio filament & the supermassive black hole Sagittarius A* (Sgr A*). Credit: NSF/VLA/UCLA/M. Morris et al.

As Jun-Hui Zhao of the Harvard-Smithsonian Center for Astrophysics in Cambridge, and a co-author on the paper, said:

“Part of the thrill of science is stumbling across a mystery that is not easy to solve. While we don’t have the answer yet, the path to finding it is fascinating. This result is motivating astronomers to build next generation radio telescopes with cutting edge technology.”

All of these scenarios are currently being investigated, and each poses its own share of implications. If the first possibility is true – in which the filament is caused by particles being ejected by Sgr A* – then astronomers would be able to gleam vital information about how magnetic fields operate in such an environment. In short, it could show that near an SMBH, magnetic fields are orderly rather than chaotic.

This could be proven by examining particles farther away from Sgr A* to see if they are less energetic than those that are closer to it. The second possibility, the cosmic string theory, could be tested by conducting follow-up observations with the VLA to determine if the position of the filament is shifting and its particles are moving at a fraction of the speed of light.

If the latter should prove to be the case, it would constitute the first evidence that theoretical cosmic strings actually exists. It would also allow astronomers to conduct further tests of General Relativity, examining how gravity works under such conditions and how space-time is affected. The team also noted that, even if the filament is not physically connected to Sgr A*, the bend in the filament is still rather telling.

In short, the bend appears to be coincide with a shock wave, the kind that would be caused by an exploding star. This could mean that one of the massive stars which surrounds Sgr A* exploded in proximity to the filament in the past, producing the necessary shock wave that altered the course of the inflowing gas and its magnetic field. All of these mysteries will be the subject of follow-up surveys conducted with the VLA.

As co-author Miller Goss from the National Radio Astronomy Observatory in New Mexico (and a co-author on the study) said, “We will keep hunting until we have a solid explanation for this object. And we are aiming to next produce even better, more revealing images.”

Further Reading: CfA, AJL

Just a Billion Years After the Earth Formed, Life had Already Figured out Plenty of Tricks

J. William Schopf and colleagues from UCLA and the University of Wisconsin analyzed the microorganisms with cutting-edge technology called secondary ion mass spectroscopy. Credit: John Vande Wege/UCLA

Life on Earth has had a long and turbulent history. Scientists estimate that roughly 4 billion years ago, just 500 million years after planet Earth formed, the first single-celled lifeforms arose. By the Archean Eon (4 to 2.5 billion years ago), multi-celled lifeforms are believed to have emerged. While the existence of such organisms (Archaea) has been inferred from carbon isotopes found in ancient rocks, fossil evidence has remained elusive.

All of that has changed, thanks to a recent study performed by a team of researchers from UCLA and the University of Wisconsin–Madison. After examining ancient rock samples from Western Australia, the team determined that they contained the fossilized remains of diverse organisms that are 3.465 billion years old. Combined with the recent spate of exoplanet discoveries, this study strengthens the theory that life is plentiful in the Universe.

The study, titled “SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions“, recently appeared in the Proceedings of the National Academy of Sciences. As the research team indicated, their study consisted of a carbon isotope analysis of 11 microbial fossils taken from the ~3,465-million-year-old Western Australian Apex Chert.

Apex chert in Western Australia, where the 3.465 billion year old fossils were found. Credit: John Valley/UW-Madison

These 11 fossils were diverse in nature and the researchers divided them into five species groups based on their apparent biological functions. Whereas two of the fossil samples appear to have performed a primitive form of photosynthesis, another apparently produced methane gas. The remaining two appear to have been methane-consumers, which they used to build and maintain their cell walls (much like how mammals use fat).

As J. William Schopf – a professor of paleobiology in the UCLA College and the lead author on the study – indicated in a UCLA Newsroom press release:

“By 3.465 billion years ago, life was already diverse on Earth; that’s clear — primitive photosynthesizers, methane producers, methane users. These are the first data that show the very diverse organisms at that time in Earth’s history, and our previous research has shown that there were sulfur users 3.4 billion years ago as well.

This study, which is the most detailed ever conducted on microorganisms preserved as ancient fossils, builds on work that Schopf and his associates have been performing for over two decades. Back in 1993, Schopf and another team of researchers conducted a study that first described these types of fossils. This was followed in 2002 by another study which substantiated their biological origin.

In this latest study, Schopf and his team established what kind of organisms they are and how complex they are. To do this, they analyzed the microorganisms using a technique called Secondary Ion Mass Spectroscopy (SIMS), which reveals the ratio of carbon-12 to carbon-13. Whereas carbon-12 is stable and the most common type found in nature, carbon-13 is a less common but similarly stable isotope that is used in organic chemistry research.

A microorganism analyzed by the researchers. Credit: J. William Schopf/UCLA

By separating the carbon from each fossil into its constituent isotopes and determining their ratios, the team was able to conclude how long ago the microorganisms lived, as well as how they lived. This task was performed by the Wisconsin researchers, who were led by professor John Valley. “The differences in carbon isotope ratios correlate with their shapes,” said Valley. “Their C-13-to-C-12 ratios are characteristic of biology and metabolic function.”

According to the current scientific consensus, advanced photosynthesis had not yet evolved and oxygen would not appear on Earth until 500 million years later. By 2 billion year ago, concentrations of oxygen gas began increasing rapidly. This means that these fossils, being around roughly 1 billion years after Earth formed, would have lived at a time when their was little oxygen in the atmosphere.

Given that oxygen would be poisonous to these types of primitive photosynthesizers, they are quite rare today. In truth, they can only be found in places where there is sufficient light but no oxygen, something which is rarely found in combination. What’s more, the rocks themselves were a source of great interest since the average lifespan of rock exposed to the surface of Earth is only about 200 million years.

When Shopf first began his career, the oldest-known rock samples were 500 million years old. This means that the fossil-bearing rocks he and his team examined are as old as rocks on Earth can get. To find fossilized life in such ancient samples demonstrates that diverse organisms and a life cycle had already evolved on Earth by the early Archaen Eon, something which scientists only suspected up until this point.

In the future, SIMS technology could be used to look for signs of fossilized life on Mars. Credit: NASA/JPL)

These findings naturally have implications for the study of how and when life emerged on Earth. Beyond Earth, the study also has implications since it demonstrates that life emerged when Earth was still very young and in a primitive state. It is therefore not unlikely that a similar process has been taking place elsewhere in the Universe. As Schopf explained:

“This tells us life had to have begun substantially earlier and it confirms that it was not difficult for primitive life to form and to evolve into more advanced microorganisms. But, if the conditions are right, it looks like life in the universe should be widespread.”

This study was made possible thanks to funding provided by the NASA Astrobiology Institute. Looking to the future, Schopf indicated that the same technology used to date these fossils will likely be used to study rocks brought back by NASA’s crewed mission to Mars. Scheduled for the 2030s, this mission will entail retrieving samples obtained by the Mars 2020 Rover and bringing them back to Earth for analysis.

Further Reading: UCLA, PNAS

What is the Radial Velocity Method?

Artist’s impression of Proxima b, which was discovered using the Radial Velocity method. Credit: ESO/M. Kornmesser

Welcome back to our series on Exoplanet-Hunting methods! Today, we look at another widely-used and popular method of exoplanet detection, known as the Radial Velocity (aka. Doppler Spectroscopy) Method.

The hunt for extra-solar planets sure has heated up in the past decade or so! Thanks to improvements made in instrumentation and methodology, the number of exoplanets discovered (as of December 1st, 2017) has reached 3,710 planets in 2,780 star systems, with 621 system boasting multiple planets. Unfortunately, due to the limits astronomers are forced to contend with, the vast majority have been discovered using indirect methods.

When it comes to these indirect methods, one of the most popular and effective is the Radial Velocity Method – also known as Doppler Spectroscopy. This method relies on observing the spectra stars for signs of “wobble”, where the star is found to be moving towards and away from Earth. This movement is caused by the presence of planets, which exert a gravitational influence on their respective sun.

Continue reading “What is the Radial Velocity Method?”

Astronomers Figure Out a New Way to Search for Planets at Alpha Centauri

Artist's impression of a hypothetical planet orbiting the star Alpha Centauri B, a member of the triple star system that is the closest to Earth. Credit: ESO

At a distance of 4.37 light-years from Earth, Alpha Centauri is the nearest star system to our own. For generations, scientists and speculative thinkers have pondered whether it might have a planetary system like our own Sun, and whether or not life may also exist there. Unfortunately, recent efforts to locate extra-solar planets in this star system have failed, with potential detections later shown to be the result of artifacts in the data.

In response to these failed efforts, several more ambitious projects are being developed to find exoplanets around Alpha Centauri. These include direct-imaging space telescopes like Project Blue and the interstellar mission known as Breakthrough Starshot. But according to a new study led by researchers from Yale University, existing data can be used to determine the probability of planets in this system (and even which kind).

The study which detailed their findings recently appeared in The Astronomical Journal under the title “Planet Detectability in the Alpha Centauri System“. The study was led by Lily Zhao, a graduate student from Yale University and a fellow with the National Science Foundation (NSF), and was co-authored by Debora Fischer, John Brewer and Matt Giguere of Yale and Bárbara Rojas-Ayala of the Universidad Andrés Bello in Chile.

Artist’s impression of what the surface might look like on a planet orbiting Alpha Centauri system. Credit: Michael S. Helfenbein

For the sake of their study, Zhao and her team considered why efforts to locate planets within the the closest star system to our own have so far failed. This is surprising when one considers how, statistically speaking, Alpha Centauri is very likely to have a system if its own. As Prof. Fischer indicated in a recent Yale News press release:

The universe has told us the most common types of planets are small planets, and our study shows these are exactly the ones that are most likely to be orbiting Alpha Centauri A and B… Because Alpha Centauri is so close, it is our first stop outside our solar system. There’s almost certain to be small, rocky planets around Alpha Centauri A and B.”

In addition to being a professor of astronomy at Yale University, Debora Fischer is also one of the leaders of the Yale Exoplanets Group. As an expert in her field, Fischer has devoted decades of her life to researching exoplanets and searching for Earth analogues beyond our Solar System. With partial funding provided by NASA and the National Science Foundation, the team relied on existing data collected by some of the latest exoplanet-hunting instruments.

These included CHIRON, a spectrograph mounted on the Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Telolo Inter-American Observatory (CTIO) in Chile. This instrument was built by Fischer’s team, and the data it provided was combined with the High Accuracy Radial velocity Planet Searcher (HARPS) and the Ultraviolet and Visual Echelle Spectrograph (UVES) instruments on the ESO’s Very Large Telescope (VLT).

Artist’s impression of the surface of the planet Proxima b orbiting the red dwarf star Proxima Centauri. The double star Alpha Centauri AB is visible to the upper right of Proxima itself. Credit: ESO

Using ten years of data collected by these instruments, Zhao and her colleagues then set up a grid system for the Alpha Centauri system. Rather than looking for signs of planets that did exist, they used the data to rule out what types of planets could not exist there. As Zhao told Universe Today via email:

“This study was special in that it used existing data of the Alpha Centauri system not to find planets, but to characterize what planets could not exist. By doing so, it returned more information about the system as a whole and provides guidance for future observations of this uniquely charismatic system. 

In addition, the team analyzed the chemical composition of the stars in the Alpha Centauri system to learn more about the kinds of material that would be available to form planets. Based on the different values obtained by observations campaigns conducted by different telescopes on Alpha Centauri’s three stars (Alpha, Beta and Proxima), they were able to place constraints on what kinds of planets could exist there. 

“We found that existing data rules out planets in the habitable zone above 53 Earth masses for alpha Centauri A, 8.4 Earth masses for Alpha Centauri B, and 0.47 Earth masses for Proxima Centauri,” said Zhao. “As for the chemical compositions, we found that the ratios of Carbon/Oxygen and Magnesium/Silicon for Alpha Centauri A and B are quite similar to that of the Sun.”

Artist’s impression of how the surface of a planet orbiting a red dwarf star may appear. Credit: M. Weiss/CfA

Basically, the results of their study effectively ruled out the possibility of any Jupiter-sized gas giants in the Alpha Centauri system. For Alpha Centauri A, they further found that planets that were less than 50 Earth masses could exist, while Alpha Centauri B might have planets smaller than 8 Earth masses. For Proxima Centauri, which we know to have at least one Earth-like planet, they determined that there might more that are less than half of Earth’s mass.

In addition to offering hope for exoplanet-hunters, this study carries with it some rather interesting implications for planetary habitability. Basically, the presence of rocky planets in the system is encouraging; but with no gas giants, a key ingredient in ensuring that planets remain habitable could be missing.

“[N]ot only could there still be habitable, Earth-mass planets around our closest stellar neighbors, but there also aren’t any gas giants that could endanger the survival of these potentially habitable, rocky planets,” said Zhao. “Furthermore, if these planets do exist, they are likely to have similar compositions to our very own Earth given the similarity in Alpha Cen A/B and our beloved Sun.”

At present, there are no instruments that have been able to confirm the existence of any exoplanets in Alpha Centauri. But as Zhao indicated, her and her teammates are optimistic that future surveys will have the necessary sensitivity to do it:

“[T]his very month has seen the commissioning of several next-generation instruments promising the precision necessary to discover these possible planets in the near future, and this analysis has shown that it is for sure worth it to keep looking!”

The ESO’s Paranal Observatory, located in the Atacama Desert of Chile. Credit: ESO

These include the ESO-built Echelle SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) – which was recently installed at the Paranal Observatory – and the EXtreme PREcision Spectrometer (EXPRES) built at Yale University. This latter instrument is currently conducting an observation run at the Lowell Observatory in Arizona, which Zhao is participating in.

“These instruments are promising a precision of down to 10-30 cm/s and should be able to detect many more smaller, and further away planets – such as habitable planets around the Centauri stars,” said Zhao. “The field of view of these two instruments are slightly different (ESPRESSO has the southern hemisphere, where Alpha Centauri is, while EXPRES covers the northern hemisphere, for instance where the Kepler and many of the K2 fields are).”

With new instruments at their disposal, and methods like the one Zhao and her team developed, the closest star system to Earth is sure to become a veritable treasure trove for astronomers and exoplanet-hunters in the coming years. And anything we find there will surely become targets for direct studies by groups like Project Blue and Breakthrough Starshot. If ET resides next door, we’re sure to hear about it soon!

Further Reading: Yale News, The Astronomical Journal

Maybe Mars and Earth Didn’t Form Close to Each Other

A new study by an international team of scientists considers whether Mars and Earth formed farther away from the Sun than previously thought. Credit: NASA/JPL-Caltech/USGS

In recent years, astronomers have been looking to refine our understanding of how the Solar System formed. On the one hand, you have the traditional Nebular Hypothesis which argues that the Sun, the planets, and all other objects in the Solar System formed from nebulous material billions of years ago. However, astronomers traditionally assumed that the planets formed in their current orbits, which has since come to be questioned.

This has come to be challenged by theories like the Grand Tack model. This theory states that Jupiter migrated from its original orbit after it formed, which had a big impact on the inner Solar System. And in a more recent study, an international team of scientists have taken things a step further, proposing that Mars actually formed in what is today the Asteroid Belt and migrated closer to the Sun over time.

The study, titled “The cool and distant formation of Mars“, recently appeared in the journal Earth and Planetary Science Letters. The study was led by Ramon Brasser of the Earth Life Science Institute at the Tokyo Institute of Technology, and included members from the University of Colorado, the Hungarian Academy of Sciences, and the University of Dundee in the UK.

Composite image showing the size difference between Earth and Mars. Credit: NASA/Mars Exploration

For the sake of their study, the team addressed one of the most glaring issues with traditional models of Solar System formation. This is the assumption that Mars, Earth and Venus formed closely together and that Mars migrated outward to its current orbit. In addition, the theory holds that Mars – roughly 53% as large as Earths and only 15% as massive – is essentially a planetary embryo that never became a full, rocky planet.

However, this has contradicted by bulk elemental and isotopic studies performed on Martian meteorites, which have noted key differences in composition between Mars and Earth. As Brasser and his team indicated in their study:

“This suggests that Mars formed outside of the terrestrial feeding zone during primary accretion. It is therefore probable that Mars always remained significantly farther from the Sun than Earth; its growth was stunted early and its mass remained relatively low.”

To test this hypothesis, the team conducted dynamical simulations that were consistent with the Grand Tack model. In these simulations, Jupiter moved a large concentration of mass towards the Sun at it migrated towards the inner Solar System, which had a profound influence on the formation and orbital characteristics of the terrestrial planets (Mercury, Venus, Earth and Mars).

The theory also holds that this migration pulled material away from Mars, thus accounting for the compositional differences and the planet’s smaller size and mass relative to Venus and Earth. What they found was that in a small percentage of their simulations, Mars formed farther from the Sun and that Jupiter’s gravitational pull pushed Mars into its current orbit.

The Grand Tack model (top) compared to the traditional theories about how the Inner Solar System formed. Credit: Sean Raymond/planetplanet.net

From this, the team concluded that either scientists lack the necessary mechanisms to explain Mars’ formation, or that of all the possibilities, this statistically rare scenario is indeed the correct one. As Stephen Mojzsis – a geological sciences professor at the University of Colorado and a co-author on the study – indicated in a recent interview with Astrobiology Magazine, the fact that the scenario is rare does not make it any less plausible:

“Given enough time, we can expect these events. For example, you’ll eventually get double sixes if you roll the dice enough times. The probability is 1/36 or roughly the same as we get for our simulations of Mars’ formation.”

In truth, a 2% probability (which is what they obtained from the simulations) is hardly poor odds when considered in cosmological terms. And when one considers that such a possibility would allow for the key differences between Mars and its terrestrial cousins (i.e. Earth and Venus), this slim probability appears rather possible. However, the idea that Mars migrated inward during the course of its history also carries with it some serious implications.

For starters, the researchers were pressed to explain how Mars could have possessed a thicker, warmer atmosphere that would have allowed for liquid water to exist on the surface. If Mars actually formed in the modern-day Asteroid Belt, it would have been subject to far less solar flux, and surface temperatures would have been significantly lower than if it had formed in its present-day location.

Scientists were able to gauge the rate of water loss on Mars by measuring the ratio of water and HDO from today and 4.3 billion years ago. Credit: Kevin Gill

However, as they go to indicate, if Mars had enough carbon-dioxide in its early atmosphere, then it is possible that impacts during the Late Heavy Bombardment could have allowed for intermittent periods where liquid water could exist on the surface. Or as they explain it:

“Unless, as our model shows, an intrinsically volatile-rich Mars possessed a strong and sustainable greenhouse atmosphere, its average surface temperature was unremittingly below 0 °C. Such a cold surface environment would have been regularly affected by early impact bombardments that both restarted a moribund hydrological cycle, and provided a haven for possible early life in the martian crust.”

Basically, while Mars would have been subject to less in the way of solar energy during its early lifespan, its possible it could have still been warm enough to support liquid water on its surface. And as Mojzsis stated in a paper he co-authored last year, the many bombardments it received (as attested to by its many craters) would have been enough to melt surface ice, thicken the atmosphere, and trigger a periodic hydrological cycle.

Another interesting thing about this study is how it predicts that Venus likely has a bulk composition (including its oxygen isotopes) that is similar to that of the Earth-Moon system. According to their simulations, this is due to the fact that Venus and Earth always shared the same building blocks, whereas Earth and Mars did not. These findings were consistent with recent ground-based infrared observations of Venus and its atmosphere.

Artist’s impression of the joint NASA-Roscosmos Venera-D mission concept, which wold include a Venus orbiter and a lander designed to survive on Venus’ surface for a few hours. Credit: NASA/JPL-Caltech

But of course, no definitive conclusions can be drawn about that until samples of Venus’ crust can be obtained. This could be accomplished if and when the proposed Venera-Dolgozhivuschaya (Venera-D) mission – a joint NASA/Roscomos plan to send a orbiter and lander to Venus – is launched in the coming decade. In the meantime, there are other outstanding issues in the Grand Tack model and Nebular Hypothesis that need to be addressed.

According to Mojzsis, these include how the gas/ice giants of the Solar System could have formed in their current locations. The idea that they formed in their current orbits beyond the Asteroid Belt seems inconsistent with models of the early Solar System, which show that there was not enough of the necessary material that far from the Sun. An alternative is that they formed closer to the Sun and also migrated outward.

As Mojzsis explained, this possibility is bolstered by recent studies of extra-solar planetary systems, where gas giants have been found to orbit very close to their stars (i.e. “Hot Jupiters”) and farther away:

“We understand from direct observations via the Kepler Space Telescope and earlier studies that giant planet migration is a normal feature of planetary systems. Giant planet formation induces migration, and migration is all about gravity, and these worlds affected each other’s orbits early on.”

If there’s one benefit to being able to look farther out into the Universe, its the way it has allowed astronomers to come up with better and more complete theories of how the Solar System came to be. And as our exploration of the Solar System continues to grow, we are sure to learn many things that will help advance our understanding of other star systems as well.

Further Reading: Astrobiology Magazine, Earth and Planetary Science Letters

Red Dwarf Star, Planet Orbiting at Right Angles. Mayhem.

Artist's impression of vessels floating near GJ436 its exoplanet, which orbits its star from pole to pole. Credit: University of Geneva/Denis Bajram

When we think of other planetary systems, we tend to think that they will operate by the same basic rules as our own. In the Solar System, the planets orbit close to the equatorial plane of the Sun – meaning around its equator. The Sun’s rotational axis, the direction of its poles based to its rotation, is also the same as most of the planets’ (the exception being Uranus, which rotates on its side).

But if the study of extra-solar planets has taught us anything, it is that the Universe is full of possibilities. Consider the star known as GJ436, a red dwarf located about 33 light-years from Earth. For years, astronomers have known that this star has a planet that behaves very much like a comet. But according to a recent study led by astronomers from the University of Geneva (UNIGE), this planet also has a very peculiar orbit.

The study, titled “Orbital Misalignment of the Neptune-mass Exoplanet GJ 436b With the Spin of its Cool Star“, recently appeared in the scientific journal Nature. The study was led by Vincent Bourrier of the Geneva University Observatory, and included members from the University of Grenoble Alpes, Tennessee State University, and the Center for Space and Habitability at the University of Bern.

Artist’s concept of the Neptune-sized planet Gliese 436b, surrounded by an envelop of hydrogen gas. Credit: NASA/ESA/STScI/G. Bacon

GJ436 has already been the source of much scientific interest, thanks in part to the discovery that its only confirmed exoplanet has a gaseous envelop similar a comet. This exoplanet, known as GJ436b, was first observed in 2004 using radial velocity measurements taken by the Keck Observatory. In 2007, GJ436b became the first Neptune-sized planet known to be orbiting very closely to its star (aka. a “Hot Neptune”).

And in 2015, GJ436 b made headlines again when scientists reported that its atmosphere was evaporating, resulting in a giant cloud around the planet and a long, trailing tale. This cloud was found to be the result of hydrogen in the planet’s atmosphere evaporating, thanks to the extreme radiation coming from its star. This never-before-seen phenomena essentially means that GJ436 b looks like a comet.

Another interesting fact about this planet is its orbital inclination, which astronomers have puzzled over for the past 10 years. Unlike the planets of the Solar System – whose orbits are largely circular – GJ436b follows a very eccentric, elliptical path. And as the research team indicated in their study, the planet also doesn’t orbit along the star’s equatorial plane, but passes almost above the its poles.

As Vincent Bourrier – a researcher at the Department of Astronomy of the UNIGE Faculty of Science, a member of the European Research Council project FOUR ACES, and the lead author of the study – explained in a UNIGE press release:

“This planet is under enormous tidal forces because it is incredibly close to its star, barely 3% of the Earth-Sun distance. The star is a red dwarf whose lifespan is very long, the tidal forces it induces should have since circularized the orbit of the planet, but this is not the case!”

Artist’s impression of JG436b, a hot Neptune located about 33 light years from Earth. Credit: Courtesy Space Telescope Science Institute

This was an especially interesting find for many reasons. On the one hand, it is the first instance where a planet was found to have a polar orbit. On the other, studying how planets orbit around a star is a great way to learn more about how that system formed and evolved. For instance, if a planet has been disturbed by the passage of a nearby star, or is being influenced by the presence of other massive planets, that will be apparent from its orbit.

As Christophe Lovis, a UNIGE researcher and co-author of the study, explained:

“Even if we have already seen misaligned planetary orbits, we do not necessarily understand their origin, especially since here it is the first time we measure the architecture of a planetary system around a red dwarf.”

Hervé Beust, an astronomer from the University of Grenobles Alpes, was responsible for doing the orbital calculations on GJ436b. As he indicated, the likeliest explanation for GJ436b’s orbit is the existence of a more massive and more distant planet in the system. While this planet is not currently known, this could be the first indication that GJ436 is a multi-planet system.

“If that is true, then our calculations indicate that not only would the planet not move along a circle around the star, as we’ve known for 10 years, but it should also be on a highly inclined orbit,” he said. “That’s exactly what we just measured!”

Artist impression of what GJ436b might look like. Credit: NASA

Another interesting takeaway from this study was the prediction that the planet has not always orbited so closely to its star. Based on their calculations, the team hypothesizes that the GJ436b may have migrated over time to become a “evaporating planet” that it is today. Here too, the existence of an as-yet-undetected companion is believed to be the most likely cause.

As with all exoplanet studies, these findings have implications for our understanding of the Solar System as well. Looking ahead, the team hopes to conduct further studies of this system in the hopes of determining if there is an elusive planetary companion to be found. These surveys will likely benefit from the deployment of next-generation missions, particularly the James Webb Space Telescope (JWST).

As Bourier indicated, “Our next goal is to identify the mysterious planet that has upset this planetary system.” Locating it will be yet another indirect way in which astronomers discover exoplanets – determining the presence of other planets based on orbital inclination of already discovered ones. The orbital inclination method, perhaps?

Further Reading: University of Geneva, Nature

Updates on ‘Oumuamua. Maybe it’s a Comet, Actually. Oh, and no Word From Aliens.

Artist’s impression of the first interstellar asteroid/comet, "Oumuamua". This unique object was discovered on 19 October 2017 by the Pan-STARRS 1 telescope in Hawaii. Credit: ESO/M. Kornmesser

On October 19th, 2017, the Panoramic Survey Telescope and Rapid Response System-1 (Pan-STARRS-1) in Hawaii announced the first-ever detection of an interstellar object, named 1I/2017 U1 (aka. ‘Oumuamua). After originally hypothesizing that it was a comet, observations performed by the European Southern Observatory (ESO) and other astronomers indicated that it was likely a strange-looking asteroid measuring about 400 meters (1312 ft) long.

Since that time, multiple surveys have been conducted to determine the true nature of this asteroid, which have included studies of its composition to Breakthrough Listen‘s proposal to listen to it for signs of radio transmissions. And according to the latest findings, it seems that ‘Oumuamua may actually be more icy than previously thought (thus indicated that it is a comet) and is not an alien spacecraft as some had hoped.

The first set of findings were presented in a study that was recently published in the scientific journal Nature, titled “Spectroscopy and thermal modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua“. The study was led by Alan Fitzsimmons of Queen’s University Belfast, and included members from The Open University in Milton Keynes, the Institute for Astronomy (IfA) at the University of Hawaii, and the European Southern Observatory (ESO).

‘Oumuamua, as imaged by the William Herschel Telescope on October 29th, 2017. Credit: Queen’s University Belfast/William Herschel Telescope

As they indicate in their study, the team relied on information from the ESO’s Very Large Telescope in Chile and the William Herschel Telescope in La Palma. Using these instruments, they were able to obtain spectra from sunlight reflected off of ‘Oumuamua within 48 hours of the discovery. This revealed vital information about the composition of the object, and pointed towards it being icy rather than rocky. As Fitzsimmons explained in op-ed piece in The Conversation:

“Our data revealed its surface was red in visible light but appeared more neutral or grey in infra-red light. Previous laboratory experiments have shown this is the kind of reading you’d expect from a surface made of comet ices and dust that had been exposed to interstellar space for millions or billions of years. High-energy particles called cosmic rays dry out the surface by removing the ices. These particles also drive chemical reactions in the remaining material to form a crust of chemically organic (carbon-based) compounds.”

These findings not only addressed a long-standing question about ‘Oumuamua true nature, it also addresses the mystery of why the object did not experience outgassing as it neared our Sun. Typically, comets experience sublimation as they get closer to a star, which results in the formation of a gaseous envelope (aka. “halo”). The presence of an outer layer of carbon-rich material would explain why this didn’t happen ‘Oumuamua.

They further conclude that the red layer of material could be the result of its interstellar journey. As Fitzsommons explained, “another study using the Gemini North telescope in Hawaii showed its color is similar to some ‘trans-Neptunian objects’ orbiting in the outskirts of our solar system, whose surfaces may have been similarly transformed.” This red coloring is due to the presence of tholins, which form when organic molecules like methane are exposed to ultra-violet radiation.

Similarly, another enduring mystery about this object was resolved thanks to the recent efforts of Breakthrough Listen. As part of Breakthrough Initiatives’ attempts to explore the Universe and search for signs of Extra-Terrestrial Intelligence (ETI), this project recently conducted a survey of ‘Oumuamua to determine if there were any signs of radio communications coming from it.

While previous studies had all indicated that the object was natural in origin, this survey was more about validating the sophisticated instruments that Listen relies upon. The observation campaign began on Wednesday, December 13th, at 3:00 pm EST (12:00 PST) using the Robert C. Byrd Greenbank Radio Telescope, the world’s premiere single-dish radio telescope located in West Virginia.

The observations period was divided into four “epochs” (based on the object’s rotational period), the first of which ran from 3:45 pm to 9:45 pm ET (12:45 pm to 6:45 pm PST) on Dec 13th, and last for ten hours. During this time, the observation team monitored ‘Oumuamua across four radio bands, ranging from the 1 to 12 GHz bands. In addition to calibrating the instrument, the survey accumulated 90 terabytes of raw data over after observing ‘Oumuamua itself for two hours.

The initial results and data were released last week (Dec. 13th) and are available through the Breakthrough Listen archive. As Andrew Siemion – the Director of Berkeley SETI Research Center who took part in the survey – indicated in a Breakthrough Initiatives press release:

“It is great to see data pouring in from observations of this novel and interesting source. Our team is excited to see what additional observations and analyses will reveal”.

So far, no signals have been detected, but the analysis is far from complete. This is being conducted by Listen’s “turboSETI” pipeline, which combs the data for narrow bandwidth signals that are drifting in frequency. This consists of filtering out interference signals from human sources, then matching the rate at which signals drift relative to the expected drift caused by ‘Oumuamua’s own motion.

In so doing, the software attempts to identify any signals that might be coming from ‘Oumuamua itself. So far, data from the S-band receiver (frequencies ranging from 1.7 to 2.6 GHz) has been processed, and analysis of the remaining three bands – which corresponds to receivers L, X, and C is ongoing. But at the moment, the results seem to indicate that ‘Oumuamua is indeed a natural object – and an interstellar comet to boot.

This is certainly bad news for those who were hoping that ‘Oumuamua might be a massive cylinder-shaped generation ship or some alien space probe sent to communicate with the whales! I guess first contact – and hence, proof we are NOT alone in the Universe – is something we’ll have to wait a little longer for.

Further Reading: The Conversation, Nature, Breakthrough Initiatives