JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

Astronomers used the JWST's interferometry mode to study the PDS 70 extrasolar system. Image Credit: Blakely et al. 2024.

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study a well-known extrasolar system called PDS 70. The goal? To test the interferometry mode and see how it performs when observing a complex target.

Continue reading “JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star”

A Cold Brown Dwarf is Belching Methane Into Space

This artist concept portrays the brown dwarf W1935. Credit: NASA, ESA, CSA, Leah Hustak (STScI)

Brown dwarfs span the line between planets and stars. By definition, a star must be massive enough for hydrogen fusion to occur within its core. This puts the minimum mass of a star around 80 Jupiters. Planets, even large gas giants like Jupiter, only produce heat through gravitational collapse or radioactive decay, which is true for worlds up to about 13 Jovian masses. Above that, deuterium can undergo fusion. Brown dwarfs lay between these two extremes. The smallest brown dwarfs resemble gas planets with surface temperatures similar to Jupiter. The largest brown dwarfs have surface temperatures around 3,000 K and look essentially like stars.

Continue reading “A Cold Brown Dwarf is Belching Methane Into Space”

Measuring Exoplanetary Magnetospheres with the Square Kilometer Array

Earth's magnetosphere

Life on Earth would not be possible without food, water, light, a breathable atmosphere and surprisingly, a magnetic field. Without it, Earth, and its inhabitants would be subjected to the harmful radiation from space making life here, impossible. If we find exoplanets with similar magnetospheres then those worlds may well be habitable. The Square Kilometer Array (SKA) which is still under construction should be able to detect such magnetospheres from radio emissions giving us real insight into our exoplanet cousins. 

Continue reading “Measuring Exoplanetary Magnetospheres with the Square Kilometer Array”

Psyche is Still Sending Data Home at Broadband Speeds

NASA’s Psyche spacecraft is shown in a clean room at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida on Dec. 8, 2022. DSOC’s gold-capped flight laser transceiver can be seen, near center, attached to the spacecraft. NASA/Ben Smegelsky

When I heard about this I felt an amused twinge of envy. Over the last year I have been using an unimpressive 4G broadband service and at best get 20 Mbps, NASA’s Psyche mission has STILL been getting 23 Mbps at 225 million km away! It’s all thanks to the prototype optical transmission system employed on the probe. It means it can get up to 100 times more data transmission rate than usual radio. 

Continue reading “Psyche is Still Sending Data Home at Broadband Speeds”

Uh oh. Hubble's Having Gyro Problems Again

Hubble Space Telescope
NASA's Hubble Space Telescope flies with Earth in the background after a 2002 servicing mission. Credit: NASA.

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history in space. Astronauts replaced the gyros during the last servicing mission in 2009, bringing it back up to six (three with three spares), but they only last so long. Last week, HST went into safe mode because one of the gyros experienced fluctuations in power. NASA paused the telescope’s science operations today to investigate the fluctuations and perhaps come up with a fix.

With this one gyro experiencing problems, only two of the gyros remain fully operational. HST works best with three gyros, and so engineers are working to understand the issue and hopefully figure out a way to fix it remotely. However, several years ago, engineers figured out a way to still conduct science operations with only a single gyro.

Continue reading “Uh oh. Hubble's Having Gyro Problems Again”

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Astronomers and astrophysicists could use these alerts and information to understand how neutron stars behave and study nuclear interactions between neutron stars and black holes colliding.

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance. Events where black holes and neutron stars collide can send out waves detectable here on Earth. It is possible that there can be an event in visible light when neutron stars collide so to take advantage of every opportunity an early warning is essential. The teams at LIGO-Virgo-KAGRA observatories are working on an alert system that will alert astronomers within 30 seconds fo a gravity wave event. If warning is early enough it may be possible to identify the source and watch the after glow. 

Continue reading “Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds”

Next Generation Ion Engines Will Be Extremely Powerful

Northrop Grumman NGHT-1X engineering model Hall-effect thruster operating in Glenn Research Center Vacuum Facility 8. The design of the NGHT-1X is based on the NASA-H71M Hall-effect thruster. Credit: Northrop Grumman

During the Space Race, scientists in both the United States and the Soviet Union investigated the concept of ion propulsion. Like many early Space Age proposals, the concept was originally explored by luminaries like Konstantin Tsiolkovsky and Hermann Oberth – two of the “forefathers of rocketry.” Since then, the technology has been validated repeatedly by missions like the Deep Space-1 (DS-1) technology demonstrator, the ESA’s Smart-1 lunar orbiter, JAXA’s Hayabusa and Hayabysa 2 satellites, and NASA’s Dawn mission.

Looking to the future of space exploration, researchers at the NASA Glenn Research Center (GRC) have been busy developing a next-generation ion engine that combines extreme fuel efficiency with high acceleration. These efforts have led to the NASA-H71M sub-kilowatt Hall-effect thruster, a small spacecraft electric propulsion (SSEP) system that will enable new types of planetary science missions. With the help of commercial partners like SpaceLogistics, this thruster will also be used to extend the lifetimes of spacecraft that are already in orbit.

Continue reading “Next Generation Ion Engines Will Be Extremely Powerful”

Neutron Stars Could be Capturing Primordial Black Holes

This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech
This magnetar is a highly magnetized neutron star. This artist's illustration shows an outburst from a magnetar. Neutron stars that spin rapidly and give out radiation are called pulsars, and specific pulsars are rare in the core of the Milky Way. Credit: NASA/JPL-CalTech

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to explain this for years. One of the more interesting ideas comes from a team of astronomers in Europe and invokes dark matter, neutron stars, and primordial black holes (PBHs).

Continue reading “Neutron Stars Could be Capturing Primordial Black Holes”

Japan’s Lunar Lander Survives its Third Lunar Night

Lunar surface seen by SLIM

Space travel and exploration was never going to be easy. Failures are sadly all too common but it’s wonderful to see missions exceed expectations. The Japanese Space Agency’s SLIM lunar lander was only supposed to survive a single day but it’s survived three brutal, harsh lunar nights and is still going. The temperatures plummet to -170C at night and the lander was never designed to operate into the night. Even sat upside down on the surface it’s still sending back pictures and data. 

Continue reading “Japan’s Lunar Lander Survives its Third Lunar Night”

Black Holes Can Halt Star Formation in Massive Galaxies

This research published in Nature is the first direct confirmation that supermassive black holes are capable of shutting down galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at snails pace albeit with the odd exception. Take the formation of galaxies growing in the early universe. Their immense gravitational field would suck in dust and gas from the local vicinity creating vast collections of stars. In the very centre of these young galaxies, supermassive blackholes would reside turning the galaxy into powerful quasars. A recent survey by the James Webb Space Telescope (JWST) reveals that black holes can create a powerful solar wind that can remove gas from galaxies faster than they can form into stars, shutting off the creation of new stars.

Continue reading “Black Holes Can Halt Star Formation in Massive Galaxies”