[/caption]
Anyone who took elementary science in grade school recalls the lesson about the three states of matter, right? That was the one where we were told that matter comes in three basic forms: liquid, solid and gas. This works for the periodic table of elements and can be extended to include just about any compound. Except perhaps for whipped cream (that damnable compound continues to defy attempts as classification!) But what if there were a fourth state for matter? It occurs when a state of matter similar to gas contains a large portion of ionized particles and generates its own magnetic field. It’s called Plasma, and it just happens to be the most common type of matter, comprising more than ninety-nine percent of matter in the visible universe and which permeates the solar system, interstellar and intergalactic environments.

The basic premise behind plasma is that heating a gas dissociates its molecular bonds, rendering it into its constituent atoms. Further heating leads to ionization (a loss of electrons), which turns it into a plasma. This plasma is therefore defined by the existence of charged particles, both positive ions and negative electrons.The presence of a large number of charged particles makes the plasma electrically conductive so that it responds strongly to electromagnetic fields. Plasma, therefore, has properties quite unlike those of solids, liquids, or gases and is considered a distinct state of matter. Like a gas, plasma does not have a definite shape or a definite volume unless enclosed in a container. But unlike gas, under the influence of a magnetic field, it may form structures such as filaments, beams and double layers. It is precisely for this reason that plasma is used in the construction of electronics, such as plasma TVs and neon signs.

The existence of plasma was first discovered by Sir William Crookes in 1879 using an assembly that is today known as a “Crookes tube”, an experimental electrical discharge tube in which air is ionized by the application of a high voltage through a voltage coil. At the time, he labeled it “radiant matter” because of its luminous quality. Sir J.J. Thomson, a British physicist, identified the nature of the matter in 1897, thanks to his discovery of electrons and numerous experiments using cathode ray tubes. However, it was not until 1928 that the term “plasma” was coined by Irving Langmuir, an American chemist and physicist, who was apparently reminded of blood plasma.

As already mentioned, plasmas are by far the most common phase of matter in the universe. All the stars are made of plasma, and even the space between the stars is filled with a plasma, albeit a very sparse one.

We have written many articles about plasma for Universe Today. Here’s an article about the plasma engine, and here’s an article about the states of matter.

If you’d like more info on plasma, check out these articles from Chem4Kids and NASA Science.

We’ve also recorded an episode of Astronomy Cast all about the Sun. Listen here, Episode 30: The Sun, Spots and All.

Sources:
http://en.wikipedia.org/wiki/Plasma_%28physics%29
http://en.wikipedia.org/wiki/Crookes_tube
http://en.wikipedia.org/wiki/Charge_carrier
http://en.wikipedia.org/wiki/J._J._Thomson
http://en.wikipedia.org/wiki/Irving_Langmuir
http://www.plasmas.org/basics.htm
http://www.plasmas.org/what-are-plasmas.htm

Matt Williams

Matt Williams is a space journalist and science communicator for Universe Today and Interesting Engineering. He's also a science fiction author, podcaster (Stories from Space), and Taekwon-Do instructor who lives on Vancouver Island with his wife and family.

Recent Posts

By Watching the Sun, Astronomers are Learning More about Exoplanets

Watching the Olympics recently and the amazing effort of the hammer throwers was a wonderful…

6 hours ago

Coronal Loops-Digital Art Combination Captures Power of the Sun, Rendered by Andrew McCarthy

Our Sun is one of the most fascinating objects in the universe and photographing it…

7 hours ago

Estimating the Basic Settings of the Universe

The Standard Model describes how the Universe has evolved at large scale. There are six…

8 hours ago

Dark Matter Could Have Driven the Growth of Early Supermassive Black Holes

The James Webb Space Telescope (JWST) keeps finding supermassive black holes (SMBH) in the early…

16 hours ago

If Gravitons Exist, this Experiment Might Find Them

There are four fundamental forces in the Universe; strong, weak, electromagnetic and gravity. Quantum theory…

1 day ago

How Vegetation Could Impact the Climate of Exoplanets

The term 'habitable zone' is a broad definition that serves a purpose in our age…

1 day ago