Categories: Astronomy

Astronomy Without A Telescope – Stellar Archaeology

[/caption]

Although, as we look further and deeper into the sky, we are always looking into the past – there are other ways of gaining information about the universe’s ancient history. Low mass, low metal stars may be remnants of the early universe and carry valuable information about the environment of that early universe.

The logic of stellar archaeology involves tracking generations of stars back to the very first stars seen in our universe. Stars born in recent eras, say within the last five or six billion years, we call Population I stars – which includes our Sun. These stars were born from an interstellar medium (i.e. gas clouds etc) that had been seeded by the death throes of a previous generation of stars we call Population II stars.

Population II stars were born from an interstellar medium that existed maybe 12 or 13 billion years ago – and which had been seeded by the death throes of Population III stars, the first stars ever seen in our universe.

And when I say death throes seeding the interstellar medium this includes average sized stars blowing off a planetary nebula at the end of their red giant phase – or bigger stars exploding as supernovae.

So for example, the low metal spectral signature of HE 0107-5240 matches that predicted for a very early low mass Population II star built from the end-products of a Population III supernova.

This is about as close as we can get gathering any information about Population III stars. Telescopes that can look deeper into space (and hence look further back in time) may eventually spot one – but it’s unlikely that any still exist. Theory has it that Population III stars formed from a homogenous interstellar medium of hydrogen and helium. The homogeneity of this medium meant that any stars that formed were all massive – in the order of hundreds of solar masses.

Stars of this scale, not only have short life spans but explode with such a force that the star literally blows itself to bits as a ‘pair-instability’ supernova – leaving no remnant neutron star or black hole behind. Supernova SN2006gy was probably a pair-instability supernova – mimicking the last gasps of Population III stars that lived more than 13 billion years ago.

Recipe for a pair instability supernova. In very massive stars, gamma rays radiating from the core become so energetic that they can undergo pair production after interaction with a nucleus. Essentially, the gamma ray creates a paired particle and antiparticle (commonly an electron and a positron). The loss of radiation pressure as gamma rays convert to particles results in gravitational collapse of the star's core - and kaboom! Credit: chandra.harvard.edu

It was only after Population III stars had seeded the interstellar medium with heavier elements that fine structure cooling resulted in disruption of thermal equilibrium and fragmentation of gas clouds – enabling smaller, and hence longer lived, Population II stars to be born.

Around the Milky Way, we can find very old Population II stars in orbiting dwarf galaxies. These stars are also common in the galactic halo and in globular clusters. However, in ‘the guts’ of the galaxy we find lots of young Population I stars.

This all leads to the view that the Milky Way is a gravitational hub nearly as old as the universe itself – which has been steadily growing in size and keeping itself looking young by maintaining a steady diet of ancient dwarf galaxies – which, deprived of such a diet, have remained largely unchanged since their formation in the early universe.

Further reading:

A. Frebel. Stellar Archaeology – Exploring the Universe with Metal-Poor Stars http://arxiv4.library.cornell.edu/abs/1006.2419

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

10 hours ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

13 hours ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

13 hours ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

20 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

24 hours ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

2 days ago