Ice Caves Possible on Mars

[/caption]

New results published in the journal Icarus suggest that caves on Mars may provide future astronauts with more than just shelter. In many locations, even far from the poles, the caves may actually trap water ice.

Ice caves are made of rock, but they contain ice year-round. (Not to be confused with glacier caves, which are caves made of ice!) Ice caves can be found on the Earth even where surface temperatures are above freezing for months at a time. This happens because cold winter air sinks into the cave and is trapped, but during the summer, the circulation in the cave shuts off: it is full of dense cold air so the warm air outside can’t get in.

Now, in a study led by Kaj Williams of NASA Ames, scientists have used simulations of the global climate and assumptions about the thermal properties of the surface to figure out where on Mars similar cold-trapping might occur. Their results show that a significant portion of the martian surface has the right conditions for ice to accumulate in caves.

Even more tantalizing, the huge volcanic provinces of Tharsis and Elysium look to be particularly good at accumulating ice. This is important because caves formed by collapsing lava tubes have been seen on the flanks of these volcanoes. Lava tube caves on Earth tend to have limited air circulation, making them good candidates for ice accumulation.

Astronauts on the surface of Mars will likely need to take cover underground to avoid the harsh radiation environment of the surface. Natural caves such as lava tubes have been suggested as ideal ready-made shelters for astronauts, and they are only looking better. Not only could ice caves provide water as a resource, the ice could preserve valuable records of past climate cycles, and the caves may be important habitats for past or present martian life.

Williams and his team plan to continue refining their models, particularly focusing on the Tharsis and Elysium regions, using higher-resolution atmospheric models and more  precise geologic data to pinpoint areas that are best for cave-ice formation.

Ice formations in a terrestrial ice cave in Montenegro. © copyright by Jack Brauer.
Ryan Anderson

Ryan Anderson is a graduate student at Cornell University. He has a background in astronomy and physics, but now spends his days studying Mars. His research focuses on preparing for the upcoming Mars Science Laboratory mission by studying potential landing sites and shooting rocks with lasers.

Recent Posts

Curiosity Finds Ancient Wave Ripples on Mars

NASA’s Curiosity Rover has been exploring Mars since 2012 and, more recently has found evidence…

2 hours ago

The Star-Forming Party Ended Early in Isolated Dwarf Galaxies

Gas is the stuff of star formation, and most galaxies have enough gas in their…

2 hours ago

A Tether Covered in Solar Panels Could Boost the ISS’s Orbit

The ISS's orbit is slowly decaying. While it might seem a permanent fixture in the…

5 hours ago

Habitable Worlds Could Have Formed Before the First Galaxies

What came first, galaxies or planets? The answer has always been galaxies, but new research…

21 hours ago

Hubble Takes a 2.5 Gigapixel Image of Andromeda

The Andromeda galaxy is our closest galactic neighbour, barring dwarf galaxies that are gravitationally bound…

1 day ago

Black Holes are Spinning Faster Than Expected

There's a Universe full of black holes out there, spinning merrily away—some fast, others more…

1 day ago