Categories: AstrobiologyMars

Are We Contaminating Mars?

[/caption]

With Mars seemingly the destination of choice in NASA’s future, researchers are taking a look at what kinds of things we want to bring with us when we go to Mars. But also, just as important is what we don’t want to take with us. A new study by the University of Central Florida reveals that bacteria common to spacecraft may be able to survive the harsh environment of Mars long enough to inadvertently contaminate the Red Planet with terrestrial life. So, if we do find life on Mars, the question might be: is it them, or is it us?

The research team replicated Mars-like conditions, such as a very dry environment, low barometric pressure, cold temperatures and intense UV radiation. They exposed one of our favorite bacteria, E. coli (Escherichia coli) – which is a potential spacecraft contaminant– to these conditions for a week, and found it likely would survive but not grow on the surface of Mars if it were shielded from UV irradiation, such as in nooks and crannies in a spacecraft, or even if it was covered by thin layers of dust.

“If long-term microbial survival is possible on Mars, then past and future explorations of Mars may provide the microbial inoculum (biological materials) for seeding Mars with terrestrial life,” said the researchers. “Thus, a diversity of microbial species should be studied to characterize their potential for long term survival on Mars.”

Even though NASA and other space agencies do sterilize spacecraft in an effort to reduce the chance of contamination to other bodies in our solar system, recent studies have shown that microbial species are likely still hitching a ride. And in what might be a more-harm-than-good scenario, the sterile nature of spacecraft assembly facilities ensures that only the most resilient species survive, including acinetobacter, bacillus, escherichia, staphylococcus and streptococcus. So we’re likely sending the worst of the worst kinds of bacteria, at least by human standards.

This research was published in the April 2010 issue of the journal Applied and Environmental Microbiology.

Source: American Society for Microbiology

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

A Nebula that Extends its Hand into Space

The Gum Nebula is an emission nebula almost 1400 light-years away. It's home to an…

10 hours ago

41,000 Years Ago Earth’s Shield Went Down

Earth is naked without its protective barrier. The planet's magnetic shield surrounds Earth and shelters…

12 hours ago

Fall Into a Black Hole With this New NASA Simulation

No human being will ever encounter a black hole. But we can't stop wondering what…

13 hours ago

Solar Max is Coming. The Sun Just Released Three X-Class Flares

The Sun is increasing its intensity on schedule, continuing its approach to solar maximum. In…

21 hours ago

New Evidence for Our Solar System’s Ghost: Planet Nine

Does another undetected planet languish in our Solar System's distant reaches? Does it follow a…

1 day ago

NASA Takes Six Advanced Tech Concepts to Phase II

It's that time again. NIAC (NASA Innovative Advanced Concepts) has announced six concepts that will…

2 days ago