Astronomy Without A Telescope – The Nice Way To Build A Solar System

When considering how the solar system formed, there are a number of problems with the idea of planets just blobbing together out of a rotating accretion disk. The Nice model (and OK, it’s pronounced ‘niece’ – as in the French city) offers a better solution.

In the traditional Kant/Laplace solar nebula model you have a rotating protoplanetary disk within which loosely associated objects build up into planetesimals, which then become gravitationally powerful centres of mass capable of clearing their orbit and voila planet!

It’s generally agreed now that this just can’t work since a growing planetesimal, in the process of constantly interacting with protoplanetary disk material, will have its orbit progressively decayed so that it will spiral inwards, potentially crashing into the Sun unless it can clear an orbit before it has lost too much angular momentum.

The Nice solution is to accept that most planets probably did form in different regions to where they orbit now. It’s likely that the current rocky planets of our solar system formed somewhat further out and have moved inwards due to interactions with protoplanetary disk material in the very early stages of the solar system’s formation.

It is likely that within 100 million years of the Sun’s ignition, a large number of rocky protoplanets, in eccentric and chaotic orbits, engaged in collisions – followed by the inward migration of the last four planets left standing as they lost angular momentum to the persisting gas and dust of the inner disk. This last phase may have stabilised them into the almost circular, and only marginally eccentric, orbits we see today.

The hypothesized collision between 'Earth Mk 1' and Theia may have occurred late in rocky planet formation creating the Earth as we know it with its huge Moon of accreted impact debris

Meanwhile, the gas giants were forming out beyond the ‘frost line’ where it was cool enough for ices to form. Since water, methane and CO2 were a lot more abundant than iron, nickel or silicon – icy planetary cores grew fast and grew big, reaching a scale where their gravity was powerful enough to hold onto the hydrogen and helium that was also present in abundance in the protoplanetary disk. This allowed these planets to grow to an enormous size.

Jupiter probably began forming within only 3 million years of solar ignition, rapidly clearing its orbit, which stopped it from migrating further inward. Saturn’s ice core grabbed whatever gases Jupiter didn’t – and Uranus and Neptune soaked up the dregs. Uranus and Neptune are thought to have formed much closer to the Sun than they are now – and in reverse order, with Neptune closer in than Uranus.

And then, around 500 million years after solar ignition, something remarkable happened. Jupiter and Saturn settled into a 2:1 orbital resonance – meaning that they lined up at the same points twice for every orbit of Saturn. This created a gravitational pulse that kicked Neptune out past Uranus, so that it ploughed in to what was then a closer and denser Kuiper Belt.

The result was a chaotic flurry of Kuiper Belt Objects, many being either flung outwards towards the Oort cloud or flung inwards towards the inner solar system. These, along with a rain of asteroids from a gravitationally disrupted asteroid belt, delivered the Late Heavy Bombardment which pummelled the inner solar system for several hundred million years – the devastation of which is still apparent on the surfaces of the Moon and Mercury today.

Then, as the dust finally settled around 3.8 billion years ago and as a new day dawned on the third rock from the Sun – voila life!

Steve Nerlich

Steve Nerlich is a very amateur Australian astronomer, publisher of the Cheap Astronomy website and the weekly Cheap Astronomy Podcasts and one of the team of volunteer explainers at Canberra Deep Space Communications Complex - part of NASA's Deep Space Network.

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

2 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

4 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

4 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 day ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

1 day ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

1 day ago