neutron star

Simulation Perfectly Matches What We See When Neutron Stars Collide

There are many mysteries in the world of astronomy and a fair number relate to the processes during the end of the life of a super massive star. Throw in the complexity of collisions and you have a real head scratching problem on your hands. In 2017 colliding neutron stars were detected and the data has allowed a new simulation to be tested with predictions beautifully matching observation.

Neutron stars are stellar corpses no more than 10km or 20km across. They are thought to form when a supermassive star goes supernova at the end of its life and undergoes gravitational collapse.  The collapse causes the remains to be compressed down to incredibly high densities, of the region 450 million billion kilograms per cubic metre (that’s equivalent to the density of an atomic nucleus). To put this into context, under the gravitational collapse, all the space between the components of atomic nuclei is squeezed out creating a gigantic neutron several kilometres across!

A new supernova in M101. Credit: Craig Stocks

It seems quite a common occurence for neutron stars to orbit in binary systems and as they do, slowly eek away energy in the form of gravity waves. These waves are like those on the ocean instead propagate through the fabric of space-time. Eventually, sufficient energy is lost that the neutron stars collide and it is this that has allowed teams of astronomers to study the processes during some of the most extreme conditions found in the Universe. 

An international team that involved the Max Planck Institute for Gravitational Physics and the University of Potsdam have used a new software tool to simulate the physical processes from neutron star mergers (otherwise known as a kilonova).  The team also utilised X-ray observations, radio signals, nuclear physics calculations and even data from Earth based accelerators and for the first time plugged the whole lot into the simulations. 

On 17 August the LIGO/Virgo team detected two neutron stars colliding in an elliptical galaxy in Hydra. The collision was identiifed from gravitational wave and gamma ray observations and by studying such high energy collisions we can learn more about the formation of heavy elements at extreme pressures and densities far greater than found in atomic nuclei.

Artist’s conception of a neutron star merger. This process also creates heavy elements. Credit: Tohoku University

The results were very promising with the predictions from the model matching observation. Now the team are running further observations with gravitational wave detectors as they hunt down the next neutron star merger to use the tool again and further enhance its model.

Source : The Goldmine of a Neutron Star Collision

Mark Thompson

Recent Posts

Primordial Holes Could be Hiding in Planets, Asteroids, and Here on Earth

Small primordial black holes (PBHs) are one of the hot topics in astronomy and cosmology…

9 hours ago

The Milky Way Might be Part of an Even Larger Structure than Laniakea

If you want to pinpoint your place in the Universe, start with your cosmic address.…

1 day ago

Webb Detects Carbon Dioxide and Hydrogen Peroxide on Pluto’s Moon Charon

The James Webb Space Telescope (JWST) has revealed magnificent things about the Universe. Using its…

1 day ago

The GALAH Fourth Data Release Provides Vital Data on One Million Stars in the Milky Way.

For the past ten years, Australia’s ARC Centre of Excellence in All Sky Astrophysics in…

2 days ago

The Sun Unleashes its Strongest Flare This Cycle

As we approach the peak of Solar Cycle 25, we can expect more and more…

3 days ago

What’s the Best Material for a Lunar Tower?

Physical infrastructure on the Moon will be critical to any long-term human presence there as…

3 days ago