Dark Matter

Dark Matter Could Be Annihilating Inside White Dwarfs

As the search for dark matter particles continues to yield nothing, astronomers continue to look at ways these elusive particles might be found. One general method is to look for evidence of dark matter particle decay. Although dark matter doesn’t interact strongly with regular matter, some dark matter models predict that dark matter particles can interact with each other, causing them to decay into regular particles. There have been several searches for this effect, but there’s no clear evidence yet. But a new study suggests looking at white dwarfs could be a good approach.

White dwarfs are the dense remnants of dead stars. They have nearly a Sun’s worth of mass compressed into a sphere the size of Earth. White dwarfs are so dense it is the pressure of electrons that keeps them from collapsing. As the authors of this new study point out, white dwarfs have a perfect balance of being dense but not overly tiny like neutron stars. They are also very common throughout the Milky Way, giving astronomers plenty of options to study them.

For this reason, the authors argue that white dwarfs are perfect sources for dark matter decay. The high density of white dwarfs would tend to attract dark matter particle interactions, and the high surface gravity of white dwarfs would tend to capture dark matter particles over time. The particle decay from dark matter would tend to produce an excess of both heat and gamma rays, and since white dwarf physics is fairly well understood astronomers should be able to distinguish between normal and dark-matter enriched white dwarfs.

Observational constraints on dark matter decay. Credit: Acevedo, et al

As an example of this, the team considered a simple white dwarf model comprised entirely of carbon-12. They then considered dark matter capture for three particle models, with light, intermediate, and heavy masses. They then calculated the interaction cross-sections between dark matter particles and the nucleons of regular matter in the white dwarf. From this, they determined the observational constraints of dark matter based on current observations.

There isn’t any evidence of dark matter decay thus far, but the authors suggest that a direct study of individual white dwarf stars could reveal dark matter. White dwarfs near the center of the Milky Way, or those in nearby globular clusters could be particularly good candidates.

So nothing yet, but as astronomers continue to search for dark matter, checking out some white dwarfs looking for excess gamma-rays could be a good option.

Reference: Acevedo, Javier F., Rebecca K. Leane, and Lillian Santos-Olmsted. “Milky Way White Dwarfs as Sub-GeV to Multi-TeV Dark Matter Detectors.” arXiv preprint arXiv:2309.10843 (2023).

Brian Koberlein

Brian Koberlein is an astrophysicist and science writer with the National Radio Astronomy Observatory. He writes about astronomy and astrophysics on his blog. You can follow him on YouTube, and on Twitter @BrianKoberlein.

Recent Posts

NASA is Considering Other Ways of Getting its Mars Samples Home

In 2021, NASA's Perseverance rover landed in the Jezero Crater on Mars. For the next…

2 hours ago

Sulphur Makes A Surprise Appearance in this Exoplanet’s Atmosphere

At our current level of knowledge, many exoplanet findings take us by surprise. The only…

10 hours ago

Catching Comet 13P Olbers This Summer

A little known periodic comet graces northern hemisphere summer skies.

13 hours ago

The Inner and Outer Milky Way Aren’t the Same Thickness, and that’s Surprising

At first glance, the universe and night sky seem largely unchanging. The reality is very…

16 hours ago

Starliner Has Five Leaks

Many space fans have been following the successful launch of the Boeing Starliner, another commercial…

16 hours ago

Astronomers Find the Slowest-Spinning Neutron Star Ever

Most neutron stars spin rapidly, completing a rotation in seconds or even a fraction of…

1 day ago