Telescopes

Subaru Telescope can now Analyze 2,400 Galaxies Simultaneously

First light is an exciting time for astronomers and engineers who help bring new telescopes up to speed. One of the most recent and significant first light milestones recently occurred at the Subaru Telescope in Hawai’i. Though it has been in operation since 2005, the National Astronomical Observatory of Japan’s (NAOJ) main telescope recently received an upgrade that will allow it to simultaneously observe 2400 astronomical objects at once over a patch of sky the size of several moons.

Those 2400 objects will be observed by the Prime Focus Spectrograph (PFS), which itself has multiple subcomponents and was developed by around a dozen universities and companies on four continents. Its major components consist of a “Prime Focus Instrument,” which contains 2400 individual fibers and lets it concentrate on various parts of the sky. Data from those fibers is then fed to a Spectrograph System (SpS), which analyzes it to produce the data used in scientific papers.

The SpS consists of four separate spectrographs, covering spectra from the ultraviolet to the near-infrared, much more than a human eye can take in alone. Or, as a press release from NAOJ puts it more poetically, it covers “one and a half rainbows.” 

Presentation on how to use the PFS in cosmology.
Credit – ESO (ASIAA) YouTube Channel / Ryu Makiya

Unfortunately, these sensitive instruments won’t usually be used to capture rainbows, but theoretically, the Wide Field Corrector could. It is a seven-lens optical system developed specifically for this upgrade that allows Subaru’s operators to correct for errors in image collection before they become a problem.

There are also some supporting systems to enable the actual data collection to take place. n addition to the SpS, the PFS utilizes a giant 8960 x 5778 pixel CMOS camera known as the Metrology Camera System to track where precisely the fibers collecting the data are located. If any are out of place, it could throw off the data the system collects. 

All of these upgrades come with high hopes – the goal of the PFS upgrade is literally to understand where the universe came from and where it’s going. It will coordinate with the Hyper Suprime-Cam already installed in an effort to “reveal the nature of dark matter and dark energy, structure formation in the universe, and the physical processes of galaxy formation and evolution.

Take a virtual tour of the Subaru telescope.
Credit – SCExAO YouTube Channel

That’s a lot for one telescope upgrade, but it will surely have lots of data to analyze. Maybe the team could implement an eyepiece to attach to the PFS before it starts collecting data like it did when the telescope was first commissioned back in 2005. Potentially, the team that worked so hard on it could even actually see some rainbows then.

Learn More:
NAOJ – 2400 New Eyes on the Sky to See Cosmic Rainbows
Prime Focus Spectrograph
UT – Astronomers set a new Record and Find the Farthest Galaxy. Its Light Took 13.4 Billion Years to Reach us
UT – Subaru Telescope Sees 1800 Supernovae

Lead Image:
Image of the PFS mounted on the telescope.
Credit – Kavli IPMU

Andy Tomaswick

Recent Posts

Other Liquids Could Be Forming Minerals on Mars

Most people will think of a dry arid landscape when they think of Mars. When…

1 hour ago

Jared Isaacman is Trump’s Choice for NASA Administrator

As a new President of the United States is elected, the NASA administrator role is…

2 hours ago

NASA Pushes Human Moon Landing Back to 2027

The Artemis moon landings are delayed again due to technical difficulties. This time, the problem…

2 hours ago

Advanced Civilizations Could be Indistinguishable from Nature

Sometimes in science you have to step back and take another look at underlying assumptions.…

6 hours ago

MAUVE: An Ultraviolet Astrophysics Probe Mission Concept

For the past thirty years, NASA's Great Observatories - the Hubble, Spitzer, Compton, and Chandra…

24 hours ago

Cosmology is at a Crossroads, But New Instruments are Coming to Help

Thanks to Hubble, JWST, and the Planck mission, we're starting to see cracks in the…

1 day ago