Categories: Astronomy

The Kilonova-Chasing Gravitational-Wave Optical Transient Observer is About to be Watching the Whole Sky

Lately there has been a flood of interest in gravitational waves.  After the first official detection at LIGO / Virgo in 2015, data has been coming in showing how common these once theoretical phenomena actually are.  Usually they are caused by unimaginably violent events, such as a merging pair of black holes.  Such events also have a tendency to emit another type of phenomena – light.  So far it has been difficult to observe any optical associated with these gravitational-wave emitting events.  But a team of researchers hope to change that with the full implementation of the Gravitation-wave Optical Transient Observer (GOTO) telescope.

The GOTO project is designed specifically to find and monitor the parts of the sky that other instruments, such as LIGO, detect gravitational waves from.  Its original incarnation, known as the GOTO-4 Prototype, was brought online in 2017.  Located in La Palma, in the Canary Islands, this prototype consisted of four “unit telescopes” (UTs) housed in an 18ft clamshell dome.  In 2020, this prototype was upgraded to 8 UTs, allowing for a much wider view of the sky.

Image of the GOTO prototype as work.
Credit: GOTO Project

The wide field of view is necessary for its work detecting gravitational-wave based optical phenomena, as directionality of gravitational waves are notoriously difficult to pin down.  The wider the field of view of a telescope, the more likely it will be able to detect an event that happens.  

As such, the operators of GOTO started an upgrade plan in 2020.  These upgrades included an additional 8 UT in a separate dome at the same observatory, which is due to be added in early 2021.  More ambitiously, the team plans to recreate the two-unit array in La Palma at the Siding Spring Observatory in New South Wales, Australia.  With these telescopes on opposite sides of the world, GOTO will “enable close to 24-hour observations, ensuring that GOTO is able to react to alerts whenever they occur” according to a recent paper.

University of Warwick’s observatory on the Canary Islands, with the GOTO domes on the right.
Credit: GOTO Project

Those alerts are an extremely important part of GOTO’s observational planning.  They come from NASA’s Gamma-ray Coordination Network (GCN), an alert system that monitors not only gravitational waves, but also other phenomena that could produce interesting optical data, such as kilonovas or gamma ray bursts.  

GOTO monitors this network through it’s software package, which is also a key component to overall system operation.  The GOTO Telescope Control System (G-TeCS) is a custom written Python script that monitors for signals of interest, calculates which signal is the highest priority, and then physically moves the telescopes to an observing position.  It is also able to do all of that in less than 30 seconds, allowing for an extremely quick turnaround in order to observe these transient phenomena of interest.

Screenshot from GOTO’s software showing a potential candidate.
Credit: GOTO Project

Once the telescopes are positioned, G-TeCS is also able to collect and analyze images.  It compares any images it captures with a calibration image, and uses a type of artificial intelligence known as a “convolutional neural network” to assign a score to the likelihood that it detected a signal of interest.  As with so much AI assisted research, humans are the last part in the analysis chain.  Researchers use a tool called GOTO Marshall to individually validate high interest targets, and can also schedule follow-up observations with other telescopes in the area.  

GOTO Observatory collaborators come from 3 different continents and 5 different countries.
Credit: GOTO Project

All of this software system is controlled remotely at the University of Warwick, who leads the GOTO project, which includes 9 other institutions from the UK, Australia, Thailand, Spain, and Finland.  As they continue to implement their planned improvements, and data continues to come in, we’ll start to be able to visualize the catastrophic events associated with some of the most violent phenomena in the universe.

Learn More:
arXiv: The Gravitational-wave Optical Transient Observer (GOTO)
University of Warwick: Gravitational wave Optical Transient Observatory

Lead Image Credit: The prototype GOTO telescope. Credit: GOTO Project

Andy Tomaswick

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

36 mins ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

3 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

3 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

1 day ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

1 day ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

1 day ago