DSCOVR Captures EPIC Views of the March 2016 Eclipse

On March 8, 2016 (March 9 local time) the Moon briefly blocked the light from the Sun in what was the only total solar eclipse of the year. The event was visible across portions of southeast Asia, Indonesia, and Micronesia, and was observed by both skywatchers on the ground in person and those watching live online around the world. While to most the view was of a silhouetted Moon slowly carving away the disk of the Sun before totality revealed a shimmering corona, the view from space looking back at Earth showed the Moon’s dark shadow passing over islands, clouds, and sea.

The picture above was acquired by NASA’s EPIC (Earth Polychromatic Imaging Camera) instrument on board the DSCOVR spacecraft, operated by NOAA. It’s one of twelve images captured during the course of the eclipse from DSCOVR’s position at L1, 1.6 million km (nearly 1 million miles) away.

Read more: What Are Lagrange Points?

Launched Feb. 11, 2015, DSCOVR observes both Earth and incoming space weather from the Sun, providing up to an hour of early warning of solar storm activity. Its location gives it a view of a constantly-illuminated Earth, since DSCOVR is always positioned between it and the Sun.*

The Moon’s shadow during a total eclipse looks like a black hole on the Earth (no actual singularities were involved.) DSCOVR/EPIC image.

Watch an animation of the Moon’s shadow traveling northeast across the Pacific here, and for more images of the March 2016 total eclipse (captured from the ground) check out this article by David Dickinson.

The next solar eclipse in 2016 will be on September 1, and will be a partial/annular eclipse visible from Africa and the Indian Ocean. The next total solar eclipse will occur on Aug. 21, 2017, during which the path of totality will cross the United States from coast to coast.

Source: NASA’s Earth Observatory

Note: The March 2016 eclipse was also captured by Japan’s Himawari-8 geostationary weather satellite; watch the sequence from that spacecraft below:

*DSCOVR is actually in a “halo orbit” around L1, which affects its viewing angle of Earth—this is why we see the Moon’s shadow and not the Moon itself (and when it does see the Moon in front of Earth there isn’t a shadow or eclipse.) Read more on Phil Plait’s Slate article here.

Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

15 hours ago

Lunar Explorers Could Run to Create Artificial Gravity for Themselves

Few things in life are certain. But it seems highly probable that people will explore…

17 hours ago

This is an Actual Picture of Space Debris

Space debris is a growing problem, so companies are working on ways to mitigate it.…

17 hours ago

Insanely Detailed Webb Image of the Horsehead Nebula

Few space images are as iconic as those of the Horsehead Nebula. Its shape makes…

2 days ago

Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

It stands to reason that stars formed from the same cloud of material will have…

2 days ago

Earth Had a Magnetosphere 3.7 Billion Years Ago

We go about our daily lives sheltered under an invisible magnetic field generated deep inside…

2 days ago