Categories: MarsMeteorites

Moroccan Meteorite May Be a 4.4-Billion-Year-Old Chunk of Dark Martian Crust

Mars is often referred to as the Red Planet. But its signature color is only skin-deep – or, I should say, dust-deep. Beneath its rusty regolith Mars has many other hues and shades as well, from pale greys like those found inside holes drilled by Curiosity to large dark regions that are the result of ancient lava flows. Now, researchers think we may have an actual piece of one of Mars’ dark plains here on Earth in the form of a meteorite that was found in the Moroccan desert in 2011.

Mars meteorite NWA 7034 (NASA)

Classified as NWA 7034 (for Northwest Africa) the meteorite is a 320-gram (11 oz.) piece of Martian basaltic breccia made up of small fragments cemented together in a dark matrix. Nicknamed “Black Beauty,” NWA 7034 is one of the oldest meteorites ever discovered and is like nothing else ever found on Earth.

According to a new study on a fragment of the meteorite by researchers from Brown University in Providence, Rhode Island and the University of New Mexico, Black Beauty is a 4.4-billion-year-old chunk of Mars’ dark crust – the only known piece of such to have landed on Earth.

While other meteorites originating from Mars have been identified, they are of entirely different types than Black Beauty.

The researchers used a hyperspectral imaging technique to obtain data from across the whole fragment. In doing this, the measurements matched what’s been detected from Mars orbit by NASA’s Mars Reconnaissance Orbiter.

“Other techniques give us measurements of a dime-sized spot,” said Kevin Cannon, a Brown University graduate student and lead author of a new paper published in the journal Icarus. “What we wanted to do was get an average for the entire sample. That overall measurement was what ended up matching the orbital data.”

In addition to indicating a truly ancient piece of another planet, these findings hint at what the surface of many parts of Mars might be like just below the rusty soil… a surface that’s been shattered and reassembled many times by meteorite impacts.

“This is showing that if you went to Mars and picked up a chunk of crust, you’d expect it to be heavily beat up, battered, broken apart and put back together,” Cannon said.

HiRISE image of dark terrain near Ganges Chasma (NASA/JPL/University of Arizona)

Source/read more at Brown University news.

Jason Major

A graphic designer in Rhode Island, Jason writes about space exploration on his blog Lights In The Dark, Discovery News, and, of course, here on Universe Today. Ad astra!

Recent Posts

You Can't Know the True Size of an Exoplanet Without Knowing its Star's Magnetic Field

In 2011, astronomers with the Wide Angle Search for Planets (WASP) consortium detected a gas…

47 mins ago

Stellar Winds Coming From Other Stars Measured for the First Time

An international research team led by the University of Vienna has made a major breakthrough.…

2 days ago

Neutron Stars Could be Heating Up From Dark Matter Annihilation

Astronomers have an intriguing idea for searching for dark matter, measuring the effect of particle…

2 days ago

The Brightest Gamma Ray Burst Ever Seen Came from a Collapsing Star

After a journey lasting about two billion years, photons from an extremely energetic gamma-ray burst…

3 days ago

Formation-Flying Spacecraft Could Probe the Solar System for New Physics

It's an exciting time for the fields of astronomy, astrophysics, and cosmology. Thanks to cutting-edge…

3 days ago

Watch a Satellite Reaction Wheel Melt in a Simulated Orbital Re-Entry

Most satellites share the same fate at the end of their lives. Their orbits decay,…

3 days ago