Categories: Astronomy

Kepler Targets Supermassive Black Hole

With only an introductory course in science, it’s easy to think that scientists strictly follow the scientific method. They propose a new hypothesis, test that hypothesis, and after many years of hard work, either confirm or reject it. But science is often prone to chance. And when a surprise presents itself, the book titled “Scientific Method 101” often gets dropped in the trash. In short, science needs — and perhaps thrives on — stupid luck.

Take any scientific mission. Often designed to do one thing, a mission tends to open up a remarkable window on something unexpected. Now, NASA’s Kepler space telescope, designed to hunt for planets in our own galaxy, has helped measure an object much more distant and more massive than any of its detected planets: a black hole.

KA1858+4850 is a Seyfert galaxy with an active supermassive black hole feeding on nearby gas. It lies between the constellations Cygnus and Lyra approximately 100 million light-years away.

In 2012, Kepler provided a highly accurate light curve of the galaxy. But the team, led by Liuyi Pei from the University of California, Irvine, also relied on ground-based observations to compliment the Kepler data.

The trick is to look at how the galaxy’s light varies over time. The light first emitted from the accretion disk travels some distance before reaching a gas cloud, where it’s absorbed and re-emitted a short time later.

Measuring the time-delay between the two emitted points of light tells the size of the gap between the accretion disk and the gas cloud. And measuring the width of the emitted light from the gas cloud tells the velocity of the gas moving near the black hole (due to an effect known as Doppler broadening). Together, these two measurements allow astronomers to determine the mass of the supermassive black hole.

Pei and her colleagues measured a time delay of roughly 13 days, and a velocity of 770 kilometers per second. This allowed them to calculate a central black hole mass of roughly 8.06 million times the mass of the Sun.

The results have been published in the Astrophysical Journal and are available online.

Shannon Hall

Shannon Hall is a freelance science journalist. She holds two B.A.'s from Whitman College in physics-astronomy and philosophy, and an M.S. in astronomy from the University of Wyoming. Currently, she is working toward a second M.S. from NYU's Science, Health and Environmental Reporting program. You can follow her on Twitter @ShannonWHall.

Recent Posts

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

5 hours ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

9 hours ago

Mapping the Milky Way’s Magnetic Field in 3D

We are all very familiar with the concept of the Earth’s magnetic field. It turns…

21 hours ago

NASA’s New Solar Sail Has Launched and Deployed

Solar Sails are an enigmatic and majestic way to travel across the gulf of space.…

22 hours ago

Here’s Why We Should Put a Gravitational Wave Observatory on the Moon

Scientists detected the first long-predicted gravitational wave in 2015, and since then, researchers have been…

1 day ago

TESS Finds its First Rogue Planet

Well over 5,000 planets have been found orbiting other star systems. One of the satellites…

2 days ago