Freak Fast Winds Created Titan’s Massive, Mysterious Dunes

Titan is Saturn’s largest moon and is constantly surprising scientists as the Cassini spacecraft probes under its thick atmosphere. Take its dunes, for example, which are huge and pointed the wrong way.

Why are they pointing opposite to the prevailing east-west winds? It happens during  two rare wind reversals during a single Saturn year (30 Earth years), investigators suggest.

Investigators repurposed an old NASA wind tunnel to simulate how Titan is at the surface, watching how the wind affects sand grains. (They aren’t sure what kind of sand is on Titan, so they tried 23 different kinds to best simulate what they think it is, which is small hydrocarbon particles that are about 1/3 the density of what you find on Earth.)

After two years of work with the model — not to mention six years of refurbishing the tunnel — the team determined that the wind must blow 50% faster than believed to get the sand moving.

Dunes on Titan seen in Cassini’s radar (top) that are similar to Namibian sand dunes on Earth. The features that appear to be clouds in the top picture are actually topographic features. Credit: NASA

“It was surprising that Titan had particles the size of grains of sand—we still don’t understand their source—and that it had winds strong enough to move them,” stated Devon Burr, an associate professor at the University of Tennessee Knoxville’s  earth and planetary science department, who led the research. “Before seeing the images, we thought that the winds were likely too light to accomplish this movement.”

The winds reverse when the Sun moves over the equator, affecting Titan’s dense atmosphere. And the effects are powerful indeed, creating dunes that are hundreds of yards (or meters) high and stretch across hundreds of miles (or kilometers).

To accomplish this, the winds would need to blow no slower than 3.2 miles per hour (1.4 meters per second), which sounds slow until you consider how dense Titan’s atmosphere is — about 12 times thicker surface pressure than what you would find on Earth. More information on the research is available in the journal Nature.

Sources: Arizona State University and the University of Tennessee, Knoxville.

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

19 hours ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

19 hours ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago