Earth’s Water Story Gets A Plot Twist From Space Rock Search

We at Universe Today have snow on our minds these days with all this Polar Vortex talk. From out the window, the snowflakes all look the same, but peer at flakes under a microscope and you can see all these different designs pop up. Turns out that our asteroid belt between Mars and Jupiter is also much more diverse than previously believed, all because astronomers took the time to do a detailed survey.

Here’s the interesting thing: the diversity, the team says, implies that Earth-like planets would be hard to find, which could be a blow for astronomers seeking an Earth 2.0 somewhere out in the universe if other research agrees.

To jump back a couple of steps, there’s a debate about how water arose on Earth. One theory is that back billions of years ago when the solar system was settling into its current state — a time when planetesimals were crashing into each other constantly and the larger planets possibly migrated between different orbits — comets and asteroids bearing water crashed into a proto-Earth.

Artist’s conception of asteroids or comets bearing water to a proto-Earth. Credit: Harvard-Smithsonian Center for Astrophysics

“If true, the stirring provided by migrating planets may have been essential to bringing those asteroids,” the astronomers stated in a press release. “This raises the question of whether an Earth-like exoplanet would also require a rain of asteroids to bring water and make it habitable. If so, then Earth-like worlds might be rarer than we thought.”

To take this example further, the researchers found that the asteroid belt comes from a mix of locations around the solar system. Well, a model the astronomers cite shows that Jupiter once migrated much closer to the sun, basically at the same distance as where Mars is now.

When Jupiter migrated, it disturbed everything in its wake and possibly removed as much as 99.9 per cent of the original asteroid population. And other planet migrations in general threw in rocks from everywhere into the asteroid belt. This means the origin of water in the belt could be more complicated than previously believed.

You can read more details of the survey in the journal Nature. Data was gathered from the Sloan Digital Sky Survey and the research was led by Francesca DeMeo, a Hubble postdoctoral fellow at the Harvard-Smithsonian Center for Astrophysics.

Source: Harvard-Smithsonian Center for Astrophysics

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

A Recently Discovered Double Binary System is Unstable. Stars Could Collide, Leading to a Supernova

A quadruple binary star system may reveal a common source of the supernovae we use…

20 hours ago

Cosmic Rays can Help Keep the World's Clocks in Sync

The world has a robust, accurate timekeeping system that regulates our clocks. Humanity uses it…

21 hours ago

A CubeSat is Flying to the Moon to Make Sure Lunar Gateway’s Orbit is Actually Stable

To validate the Lunar Gateway's orbit around the lunar poles (a halo orbit), NASA is…

2 days ago

What’s the Right Depth to Search for Life on Icy Worlds?

Are we alone? Is there life beyond Earth? These are the questions that plague the…

4 days ago

Astronomers Finally Catch a Nova Detonating on a White Dwarf as it's Happening

On July 7, 2020, the X-ray instrument eROSITA captured an astronomical event that – until…

4 days ago

This is it! Meet the Supermassive Black Hole at the Heart of the Milky Way

The Event Horizon Telescope has just released the first images of Sagittarius A*, the supermassive…

4 days ago