Categories: Physics

Cosmonaut Sergei Krikalev, the World’s Most Prolific Time Traveler

Is time travel a fact or is it just science fiction? Thanks to time dilation and Einstein’s theory of relativity, we know that time travel can and actually does happen, albeit only in extremely tiny increments at the speeds and distances we can travel in space. If you add up the accumulated speed cosmonaut Sergei Krivalev has traveled in space – the most of any human with a total time spent in orbit of 803 days 9 hours and 39 minutes – he has actually time-traveled into his own future by 0.02 seconds.

Time dilation is caused by differences in either gravity or relative velocity — each of which affects time in different ways. When astronauts and satellites orbit the Earth, they are slightly further away from the center of the planet –compared to people on the ground – and so they actually experience less gravitational time dilation. This means the astronauts’ time would run slightly faster, and when they return to Earth, they’d have to “come back” to the past compared to when they were in space.

But time dilation due to velocity means that clocks for astronauts in space run slightly slower relative to people who are on the ground. When you come back to Earth, you’d be have to go into the future slightly to catch up with clocks on the ground.

The effect of time dilation due to gravity, however, “is quite small because Earth’s gravity is quite weak,” says educator Colin Stuart in this great instructional video from TedEd, “and so the time dilation due to their speed wins out and astronauts really do travel a tiny amount into their futures.”

But, as stated earlier, with our current technology limiting the velocities of astronauts, these differences are minuscule: after 6 months on the ISS, an astronaut has aged less than those on Earth, but only by about 0.007 seconds. The effects would be greater if we could get the ISS to orbit Earth at near the speed of light (approximately 300,000 km/s), instead of the actual speed of about 7.7 km/s.

This effect has been proven by GPS satellites, which orbit Earth at about 14,000 km/h (9,000 mph) which cuts several microseconds off their clocks daily, relative to clocks on Earth.

Watch the video for more information and see associated material from TedEd, or read these interesting articles from Huffington Post and DailyMail. Here are some calculations about time and the “Twin Paradox.”

And if you really want to know what time it is, check out the website for the primary atomic clock.

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at and and Instagram at and

Recent Posts

OSIRIS-REx Returns This Sunday!

On Sunday, September 24th, NASA’s OSIRIS-REx mission will deliver samples from the asteroid Benny.

12 hours ago

Machine Learning Algorithms Can Find Anomalous Needles in Cosmic Haystacks

The face of astronomy is changing. Though narrow-field point-and-shoot astronomy still matters (JWST anyone?), large…

20 hours ago

The JWST is Forcing Astronomers to Rethink Early Galaxies

The JWST has surprised astronomers again. Contrary to our existing understanding, the JWST showed us…

2 days ago

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

Most planets and moons in the Solar System are clearly dead and totally unsuitable for…

2 days ago

If You Could See Gravitational Waves, the Universe Would Look Like This

Our biology limits our vision. Our eyes can only perceive specific wavelengths of light. But…

2 days ago

Solar Sails Could Reach Mars in Just 26 Days

A recent study submitted to Acta Astronautica explores the potential for using aerographite solar sails…

2 days ago