Mercury’s Resonant Rotation ‘Should Be Common’ In Alien Planets

Three to two. That’s the ratio of the time it takes Mercury to go around the sun (88 days) in relation to its rotation (58 days). This is likely due to the influence of the Sun’s immense gravity on the planet. A new study confirms that finding, while stating something even more interesting: other star systems could see the same type of resonance.

Hundreds of confirmed exoplanets have been found so far, many of them in very tight configurations, the authors said. “Mercury-like states should be common among the hundreds of discovered and confirmed exoplanets, including potentially habitable super-Earths orbiting M-dwarf [red dwarf] stars,” they added. “The results of this investigation provide additional insight into the possibilities of known exoplanets to support extraterrestrial life.”

Habitability, of course, depends on many metrics. What kind of star is in the system, and how stable is it? How far away are the planets from the star? What is the atmosphere of the planet like? And as this study points out, what about if one side of the planet is tidally locked to its star and spends most or all of its time with one side facing the starshine?

Additionally, the study came up with an explanation as to why Mercury remains in a 3:2 orbit in opposition to, say, the Moon, which always has one side facing the Earth. The study took into account factors such as internal friction and a tidal “bulge” that makes Mercury appear slightly misshapen (and which could slow it down even further.) Basically, it has to do with Mercury’s early history.

From Orbit, Looking toward Mercury’s Horizon. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

“Among the implications of the released study are, to name a few, a fast tidal spin-down, a relatively cold (i.e., not fully molten) state of the planet at the early stages of its life, and a possibility that the internal segregation and formation of the massive liquid core happened after Mercury’s capture into the resonance,” the press release added.

The results were presented today (Oct. 7) at the American Astronomical Society department of planetary sciences meeting held in Denver. A press release did not make clear if the study has been submitted for peer review or published.

Source: AAS Division of Planetary Sciences

Elizabeth Howell

Elizabeth Howell is the senior writer at Universe Today. She also works for Space.com, Space Exploration Network, the NASA Lunar Science Institute, NASA Astrobiology Magazine and LiveScience, among others. Career highlights include watching three shuttle launches, and going on a two-week simulated Mars expedition in rural Utah. You can follow her on Twitter @howellspace or contact her at her website.

Recent Posts

Psyche is Still Sending Data Home at Broadband Speeds

When I heard about this I felt an amused twinge of envy. Over the last…

2 hours ago

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history…

7 hours ago

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

2 days ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

2 days ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

2 days ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago