Categories: Earth Observation

Gamma Rays Come from the Earth Too

A great mystery was set in motion a few years ago when a spacecraft designed to measure gamma-ray bursts — the most powerful explosions in the Universe — found that Earth was actually emitting some flashes of its own.

Named Terrestrial gamma-ray flashes (TGFs), these very short blasts of gamma rays lasting about one millisecond, are emitted into space from Earth’s upper atmosphere. Scientists believe electrons traveling at nearly the speed of light scatter off of atoms and decelerate in the upper atmosphere, emitting the TGFs.

The Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory discovered TGFs in 1994, but was limited in its ability to count them or measure peak energies. New observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) satellite raise the maximum recorded energy of TGFs by a factor of ten and indicate that the Earth gives off about 50 TGFs every day, and possibly more.

“The energies we see are as high as those of gamma rays emitted from black holes and neutron stars,” said David Smith, an assistant professor of physics at UC Santa Cruz and author of a scientific paper on this topic.

The exact mechanism that accelerates the electron beams to produce TGFs is still uncertain, he said, but it probably involves the build-up of electric charge at the tops of thunderclouds due to lightning discharges. This results in a powerful electric field between the cloudtops and the ionosphere, the outer layer of Earth’s atmosphere.

TGFs have been associated with lightning strikes and may be related to red sprites and blue jets, side effects of thunderstorms that occur in the upper atmosphere and are typically only visible with high-altitude aircraft and satellites. The exact relationship between all these events is still unclear, though.

RHESSI was launched in 2002 to study X-rays and gamma-rays from solar flares, but its detectors pick up gamma rays from a variety of sources. While scientists estimate a global average rate of about 50 TGFs a day, the rate could be up to 100 times higher if, as some models indicate, TGFs are emitted as narrowly focused beams that would only be detected when the satellite is directly in their path.

Original Source: NASA News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Planetary Protection: Why study it? What can it teach us about finding life beyond Earth?

Universe Today has recently investigated a plethora of scientific disciplines, including impact craters, planetary surfaces,…

4 hours ago

New Telescope Images of Io are so Good, it Looks like a Spacecraft Took Them

The Large Binocular Telescope (LBT), located on Mount Graham in Arizona and run by the…

5 hours ago

South Korea is Planning to Send a Mission to Mars by 2045

It is truly wonderful to see so many nations aspiring to space exploration and trips…

7 hours ago

A New Deep Learning Algorithm Can Find Earth 2.0

How can machine learning help astronomers find Earth-like exoplanets? This is what a recently accepted…

1 day ago

Cryovolcanism: Why study it? What can it teach us about finding life beyond Earth?

Universe Today has had the privilege of spending the last several months venturing into a…

1 day ago

Io Has Been Volcanically Active for its Entire History

Jupiter's moon Io is a volcanic powerhouse. It's the most geologically active world in the…

1 day ago