Possible Meteorite Fragments from 1908 Tunguska Explosion Found

The 1908 explosion over the Tunguska region in Siberia has always been an enigma. While the leading theories of what caused the mid-air explosion are that an asteroid or comet shattered in an airburst event, no reliable trace of such a body has ever been found. But a newly published paper reveals three different potential meteorite fragments found in the sandbars in a body of water in the area, the Khushmo River. While the fragments have all the earmarks of being meteorites from the event – which could potentially solve the 100-year old mystery — the only oddity is that the researcher actually found the fragments 25 years ago, and only recently has published his findings.

Like the recent Chelyabinsk airburst event, the Tunguska event likely also produced a shower of fragments from the exploding parent body, scientists have thought. But no convincing evidence has ever been found from the June 30, 1908 explosion that occurred over the Tunguska region. The explosion flattened trees in a 2,000 square kilometer area. Luckily, that region was largely uninhabited, but reportedly one person was killed and there were very few people that reported the explosion. Forensic-like research has determined the blast was 1,000 times more powerful than a nuclear bomb explosion, and it registered 5 on the Richter scale.

Previous expeditions to the region turned up empty as far as finding meteorites; however one expedition in 1939 by Russian mineralogist Leonid Kulik found a sample of melted glassy rock containing bubbles, which was considered evidence of an impact event. But the sample was somehow lost and has never undergone modern analysis.

The expedition in 1998 by Andrei Zlobin from the Russian Academy of Sciences was initially unsuccessful in finding meteorites or evidence of impacts. He made several drill holes in the peat bogs in the area and while he found evidence of the explosion, he didn’t find any meteorites. He then decided to look in the nearby river shoal.

Zlobin gathered about 100 samples of rocks that had features of potential meteorites, but further examination produced just three rocks with tell-tale features like melting and regmalypts – the , thumblike impressions found on the surface of meteorites which are caused by ablation as the hot rock falls through the atmosphere at high speed.

Zlobin writes that “After the expedition the author focused his efforts on experimental investigation of thermal processes and mathematical modeling of the Tunguska impact [Zlobin, 2007],” and he used tree ring evidence to estimate the temperatures from the event, and concluded that rocks already on the ground would not have been changed or melted from the blast, and therefore any rocks having evidence of melting should be from the impactor itself.

Zlobin says he has not yet carried out a detailed chemical analysis of the rocks, which would reveal their chemical and isotopic composition. But he does say the stony fragments do not rule out a comet since the nucleus could easily contain rock fragments. However, he has calculated the density of the impactor must have been about 0.6 grams per cubic centimeter, which is about the same as nucleus of Halley’s comet. Zlobin says that initially, the evidence seems “excellent confirmation of cometary origin of the Tunguska impact.”

While there is nothing definitive yet from Zlobin’s new paper – and there is the question of why he waited so long to conduct his study – his work provides hope for a better explanation of the Tunguska event as opposed to some rather off-the-wall ideas that have been proposed, such as a Tesla death-ray or an explosion of methane gas from the bogs.

The Technology Review blog writes that “clearly there is more work to be done here, particularly the chemical analysis perhaps with international cooperation and corroboration.”

Read Zlobin’s paper, Discovery of probably Tunguska meteorites at the bottom of Khushmo river’s shoal

Source: MIT Technology Review

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Uh oh. Hubble's Having Gyro Problems Again

The Hubble Space Telescope has gone through its share of gyroscopes in its 34-year history…

23 mins ago

Astronomers Will Get Gravitational Wave Alerts Within 30 Seconds

Any event in the cosmos generates gravitational waves, the bigger the event, the more disturbance.…

2 days ago

Next Generation Ion Engines Will Be Extremely Powerful

During the Space Race, scientists in both the United States and the Soviet Union investigated…

2 days ago

Neutron Stars Could be Capturing Primordial Black Holes

The Milky Way has a missing pulsar problem in its core. Astronomers have tried to…

2 days ago

Japan’s Lunar Lander Survives its Third Lunar Night

Space travel and exploration was never going to be easy. Failures are sadly all too…

2 days ago

Black Holes Can Halt Star Formation in Massive Galaxies

It’s difficult to actually visualise a universe that is changing. Things tend to happen at…

2 days ago