NASA’s Roman Mission Might Tell Us if the Universe Will Tear Itself Apart in the Future

The concept of accelerating expansion does get you wondering just how much it can accelerate. Theorists think there still might be a chance of a big crunch, a steady-as-she-goes expansion or a big rip. Or maybe just a little rip?

NASA’s Nancy Gracy Roman Space Telescope won’t launch until 2027, and it won’t start operating until some time after that. But that isn’t stopping excited scientists from dreaming about their new toy and all it will do. Who can blame them?

A new study examines the Roman Space Telescope’s power in detail to see if it can help us answer one of our most significant questions about the Universe. The question?

Will the Universe keep expanding and tear itself apart in a Big Rip?

Continue reading “NASA’s Roman Mission Might Tell Us if the Universe Will Tear Itself Apart in the Future”

Two Stars Do a Short-Orbit Tango Around the Milky Way’s Black Hole

Astronomers have known for some time there was one star orbiting fairly close to the black hole at the center of our galaxy. But now another star has been found dipping close and orbiting even faster around the Milky Way’s central black hole. Astronomer Andrea Ghez from UCLA says the ability to watch these two stars in a short-period ‘tango’ around the black hole will help scientist measure the effects of space-time curvature, and they should be able to determine whether Albert Einstein was right in his prediction of how black holes could warp space and time.

“I’m extremely pleased to find two stars that orbit our galaxy’s supermassive black hole in much less than a human lifetime,” said Ghez. “It is the tango of [these stars] that will reveal the true geometry of space and time near a black hole for the first time. This measurement cannot be done with one star alone.”

There are nearly 3,000 stars that orbit somewhat close to the black hole, and most of them have orbits of 60 years or longer.
The previously known close-in star, S0-2, orbits the black hole every 15.5 years. And now, the newly found star, called S0-102, orbits the black hole in a blazing 11.5 years, the shortest known orbit of any star near this black hole.

Reconstruction of the orbits of two stars—S0-2 and S0-102—near the black hole at the Milky Way’s center. (Other stars’ orbits are also depicted by fainter lines.) The background is a real high-resolution infrared image of the region. Credit: Andrea Ghez et al./UCLA/Keck

In the same way that planets orbit around the sun, S0-102 and S0-2 are each in an elliptical orbit around the central black hole. Ghez said that the planetary motion in our solar system was the ultimate test for Newton’s gravitational theory 300 years ago, and now the motion of S0-102 and S0-2 will be the ultimate test for Einstein’s theory of general relativity, which describes gravity as a consequence of the curvature of space and time.

“The exciting thing about seeing stars go through their complete orbit is not only that you can prove that a black hole exists but you have the first opportunity to test fundamental physics using the motions of these stars,” Ghez said. “Showing that it goes around in an ellipse provides the mass of the supermassive black hole, but if we can improve the precision of the measurements, we can see deviations from a perfect ellipse — which is the signature of general relativity.”

As the stars come to their closest approach, their motion will be affected by the curvature of spacetime, and the light traveling from the stars to us will be distorted, Ghez said.

S0-2, which is 15 times brighter than S0-102, will go through its closest approach to the black hole in 2018. S0-102 makes its closest approach in 2021, so the team will be keeping an eye on these stars as they get tantalizingly close, but not close enough to get sucked in, Ghez said.

Ghez and her colleagues have been observing S0-2 since 1995. In 2000, she and her team reported — for the first time – that astronomers had seen stars accelerate around the supermassive black hole. Their research demonstrated that three stars had accelerated by more than 250,000 mph a year as they orbited the black hole. The speed of S0-102 and S0-2 should also accelerate by more than 250,000 mph at their closest approach, Ghez said.

“The fact that we can find stars that are so close to the black hole is phenomenal,” said Ghez. “Now it’s a whole new ballgame, in terms of the kinds of experiments we can do to understand how black holes grow over time, the role supermassive black holes play in the center of galaxies, and whether Einstein’s theory of general relativity is valid near a black hole, where this theory has never been tested before. It’s exciting to now have a means to open up this window.”

The research was done using the Keck Telescopes. The team’s paper was published Oct. 5 in the journal Science.

Source: UCLA

Lead image caption: The Keck I and Keck II telescopes focus on two stars orbiting Milky Way’s black hole. Background photo credit: Dan Birchall/Subaru Telescope on Mauna Kea, Hawaii. Overlay created by Professor Andrea Ghez and her research team at UCLA and are from data sets obtained with the W. M. Keck Telescopes.

Podcast: Einstein Was Right

At least once a week we get an email claiming that Einstein was wrong. Well you know what, Einstein was right. In fact, as part of his theories of Special and General Relativity, Einstein made a series of predictions about what experiments should discover. Some explained existing puzzles in science, while others made predictions that were only recently proven true.

Click here to download the episode.

Or subscribe to: astronomycast.com/podcast.xml with your podcatching software.

“Einstein Was Right” on the Astronomy Cast website.

Gravity Probe B Confirms Two of Einstein’s Space-Time Theories

Einstein's predicted geodetic and frame-dragging effects, and the Schiff Equation for calculating them. Credit: Stanford University

[/caption]

Researchers have confirmed two predictions of Albert Einstein’s general theory of relativity, concluding one of NASA’s longest-running projects. The Gravity Probe B experiment used four ultra-precise gyroscopes housed in an Earth-orbiting satellite to measure two aspects of Einstein’s theory about gravity. The first is the geodetic effect, or the warping of space and time around a gravitational body. The second is frame-dragging, which is the amount a spinning object pulls space and time with it as it rotates.

Gravity Probe-B determined both effects with unprecedented precision by pointing at a single star, IM Pegasi, while in a polar orbit around Earth. If gravity did not affect space and time, GP-B’s gyroscopes would point in the same direction forever while in orbit. But in confirmation of Einstein’s theories, the gyroscopes experienced measurable, minute changes in the direction of their spin, while Earth’s gravity pulled at them.

The project as been in the works for 52 years.

The findings are online in the journal Physical Review Letters.

Artist concept of Gravity Probe B orbiting the Earth to measure space-time, a four-dimensional description of the universe including height, width, length, and time. Image credit: NASA

“Imagine the Earth as if it were immersed in honey,”.said Francis Everitt, Gravity Probe-B principal investigator at Stanford University. “As the planet rotates, the honey around it would swirl, and it’s the same with space and time,” “GP-B confirmed two of the most profound predictions of Einstein’s universe, having far-reaching implications across astrophysics research. Likewise, the decades of technological innovation behind the mission will have a lasting legacy on Earth and in space.”

NASA began development of this project starting in the fall of 1963 with initial funding to develop a relativity gyroscope experiment. Subsequent decades of development led to groundbreaking technologies to control environmental disturbances on spacecraft, such as aerodynamic drag, magnetic fields and thermal variations. The mission’s star tracker and gyroscopes were the most precise ever designed and produced.

GP-B completed its data collection operations and was decommissioned in December 2010.

“The mission results will have a long-term impact on the work of theoretical physicists,” said Bill Danchi, senior astrophysicist and program scientist at NASA Headquarters in Washington. “Every future challenge to Einstein’s theories of general relativity will have to seek more precise measurements than the remarkable work GP-B accomplished.”

Innovations enabled by GP-B have been used in GPS technologies that allow airplanes to land unaided. Additional GP-B technologies were applied to NASA’s Cosmic Background Explorer mission, which accurately determined the universe’s background radiation. That measurement is the underpinning of the big-bang theory, and led to the Nobel Prize for NASA physicist John Mather.

The drag-free satellite concept pioneered by GP-B made a number of Earth-observing satellites possible, including NASA’s Gravity Recovery and Climate Experiment and the European Space Agency’s Gravity field and steady-state Ocean Circulation Explorer. These satellites provide the most precise measurements of the shape of the Earth, critical for precise navigation on land and sea, and understanding the relationship between ocean circulation and climate patterns.

GP-B also advanced the frontiers of knowledge and provided a practical training ground for 100 doctoral students and 15 master’s degree candidates at universities across the United States. More than 350 undergraduates and more than four dozen high school students also worked on the project with leading scientists and aerospace engineers from industry and government. One undergraduate student who worked on GP-B became the first female astronaut in space, Sally Ride. Another was Eric Cornell who won the Nobel Prize in Physics in 2001.

“GP-B adds to the knowledge base on relativity in important ways and its positive impact will be felt in the careers of students whose educations were enriched by the project,” said Ed Weiler, associate administrator for the Science Mission Directorate at NASA Headquarters.

Sources: NASA, Stanford University

Message in a Wobble: Black Holes Send Memos in Light

Where is the Nearest Black Hole
Artist concept of matter swirling around a black hole. (NASA/Dana Berry/SkyWorks Digital)

[/caption]

Imagine a spinning black hole so colossal and so powerful that it kicks photons, the basic units of light, and sends them careening thousands of light years through space. Some of the photons make it to Earth. Scientists are announcing in the journal Nature Physics today that those well-traveled photons still carry the signature of that colossal jolt, as a distortion in the way they move. The disruption is like a long-distance missive from the black hole itself, containing information about its size and the speed of its spin.

The researchers say the jostled photons are key to unraveling the theory that predicts black holes in the first place.

“It is rare in general-relativity research that a new phenomenon is discovered that allows us to test the theory further,” says Martin Bojowald, a Penn State physics professor and author of a News & Views article that accompanies the study.

Black holes are so gravitationally powerful that they distort nearby matter and even space and time. Called framedragging, the phenomenon can be detected by sensitive gyroscopes on satellites, Bojowald notes.

Lead study author Fabrizio Tamburini, an astronomer at the University of Padova (Padua) in Italy, and his colleagues have calculated that rotating spacetime can impart to light an intrinsic form of orbital angular momentum distinct from its spin. The authors suggest visualizing this as non-planar wavefronts of this twisted light like a cylindrical spiral staircase, centered around the light beam.

“The intensity pattern of twisted light transverse to the beam shows a dark spot in the middle — where no one would walk on the staircase — surrounded by concentric circles,” they write. “The twisting of a pure [orbital angular momentum] mode can be seen in interference patterns.” They say researchers need between 10,000 and 100,000 photons to piece a black hole’s story together.

And telescopes need some kind of 3D (or holographic) vision in order to see the corkscrews in the light waves they receive, Bojowald said: “If a telescope can zoom in sufficiently closely, one can be sure that all 10,000-100,000 photons come from the accretion disk rather than from other stars farther away. So the magnification of the telescope will be a crucial factor.”

He believes, based on a rough calculation, that “a star like the sun as far away as the center of the Milky Way would have to be observed for less than a year. So it is not going to be a direct image, but one would not have to wait very long.”

Study co-author Bo Thidé, a professor and program director at the Swedish Institute of Space Physics, said a year may be conservative, even in the case of a small rotation and a need for up to 100,000 photons.

“But who knows,” he said. “We will know more after we have made further detailed modelling – and observations, of course.  At this time we emphasize the discovery of a
new general relativity phenomenon that allows us to make observations, leaving precise quantitative predictions aside.”

Links: Nature Physics

Einstein’s General Relativity Tested Again, Much More Stringently

Einstein and Relativity
Albert Einstein

[/caption]
This time it was the gravitational redshift part of General Relativity; and the stringency? An astonishing better-than-one-part-in-100-million!

How did Steven Chu (US Secretary of Energy, though this work was done while he was at the University of California Berkeley), Holger Müler (Berkeley), and Achim Peters (Humboldt University in Berlin) beat the previous best gravitational redshift test (in 1976, using two atomic clocks – one on the surface of the Earth and the other sent up to an altitude of 10,000 km in a rocket) by a staggering 10,000 times?

By exploited wave-particle duality and superposition within an atom interferometer!

Cesium atom interferometer test of gravitational redshift (Courtesy Nature)

About this figure: Schematic of how the atom interferometer operates. The trajectories of the two atoms are plotted as functions of time. The atoms are accelerating due to gravity and the oscillatory lines depict the phase accumulation of the matter waves. Arrows indicate the times of the three laser pulses. (Courtesy: Nature).

Gravitational redshift is an inevitable consequence of the equivalence principle that underlies general relativity. The equivalence principle states that the local effects of gravity are the same as those of being in an accelerated frame of reference. So the downward force felt by someone in a lift could be equally due to an upward acceleration of the lift or to gravity. Pulses of light sent upwards from a clock on the lift floor will be redshifted when the lift is accelerating upwards, meaning that this clock will appear to tick more slowly when its flashes are compared at the ceiling of the lift to another clock. Because there is no way to tell gravity and acceleration apart, the same will hold true in a gravitational field; in other words the greater the gravitational pull experienced by a clock, or the closer it is to a massive body, the more slowly it will tick.

Confirmation of this effect supports the idea that gravity is geometry – a manifestation of spacetime curvature – because the flow of time is no longer constant throughout the universe but varies according to the distribution of massive bodies. Exploring the idea of spacetime curvature is important when distinguishing between different theories of quantum gravity because there are some versions of string theory in which matter can respond to something other than the geometry of spacetime.

Gravitational redshift, however, as a manifestation of local position invariance (the idea that the outcome of any non-gravitational experiment is independent of where and when in the universe it is carried out) is the least well confirmed of the three types of experiment that support the equivalence principle. The other two – the universality of freefall and local Lorentz invariance – have been verified with precisions of 10-13 or better, whereas gravitational redshift had previously been confirmed only to a precision of 7×10-5.

In 1997 Peters used laser trapping techniques developed by Chu to capture cesium atoms and cool them to a few millionths of a degree K (in order to reduce their velocity as much as possible), and then used a vertical laser beam to impart an upward kick to the atoms in order to measure gravitational freefall.

Now, Chu and Müller have re-interpreted the results of that experiment to give a measurement of the gravitational redshift.

In the experiment each of the atoms was exposed to three laser pulses. The first pulse placed the atom into a superposition of two equally probable states – either leaving it alone to decelerate and then fall back down to Earth under gravity’s pull, or giving it an extra kick so that it reached a greater height before descending. A second pulse was then applied at just the right moment so as to push the atom in the second state back faster toward Earth, causing the two superposition states to meet on the way down. At this point the third pulse measured the interference between these two states brought about by the atom’s existence as a wave, the idea being that any difference in gravitational redshift as experienced by the two states existing at difference heights above the Earth’s surface would be manifest as a change in the relative phase of the two states.

The virtue of this approach is the extremely high frequency of a cesium atom’s de Broglie wave – some 3×1025Hz. Although during the 0.3 s of freefall the matter waves on the higher trajectory experienced an elapsed time of just 2×10-20s more than the waves on the lower trajectory did, the enormous frequency of their oscillation, combined with the ability to measure amplitude differences of just one part in 1000, meant that the researchers were able to confirm gravitational redshift to a precision of 7×10-9.

As Müller puts it, “If the time of freefall was extended to the age of the universe – 14 billion years – the time difference between the upper and lower routes would be a mere one thousandth of a second, and the accuracy of the measurement would be 60 ps, the time it takes for light to travel about a centimetre.”

Müller hopes to further improve the precision of the redshift measurements by increasing the distance between the two superposition states of the cesium atoms. The distance achieved in the current research was a mere 0.1 mm, but, he says, by increasing this to 1 m it should be possible to detect gravitational waves, predicted by general relativity but not yet directly observed.

Sources: Physics World; the paper is in the 18 February, 2010 issue of Nature

What is an Event Horizon?

The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. In coordinated press conferences across the globe, EHT researchers revealed that they succeeded, unveiling the first direct visual evidence of the supermassive black hole in the centre of Messier 87 and its shadow. The shadow of a black hole seen here is the closest we can come to an image of the black hole itself, a completely dark object from which light cannot escape. The black hole’s boundary — the event horizon from which the EHT takes its name — is around 2.5 times smaller than the shadow it casts and measures just under 40 billion km across. While this may sound large, this ring is only about 40 microarcseconds across — equivalent to measuring the length of a credit card on the surface of the Moon. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks — hydrogen masers — which precisely time their observations. These observations were collected at a wavelength of 1.3 mm during a 2017 global campaign. Each telescope of the EHT produced enormous amounts of data – roughly 350 terabytes per day – which was stored on high-performance helium-filled hard drives. These data were flown to highly specialised supercomputers — known as correlators — at the Max Planck Institute for Radio Astronomy and MIT Haystack Observatory to be combined. They were then painstakingly converted into an image using novel computational tools developed by the collaboration. Credit: Event Horizon Telescope Collaboration

The event horizon of a black hole is the boundary (‘horizon’) between its ‘outside’ and its ‘inside’; those outside cannot know anything about things (‘events’) which happen inside.

What an event horizon is – its behavior – is described by applying the equations of Einstein’s theory of General Relativity (GR); as of today, the theoretical predictions concerning event horizons can be tested in only very limited ways. Why? Because we don’t have any black holes we can study up close and personal (so to speak) … which is perhaps a very good thing!

If the black hole is not rotating, its event horizon has the shape of a sphere; it’s like a 2D surface over a 3D ball. Except, not quite; GR is a theory about spacetime, and contains many counter-intuitive aspects. For example, if you fall freely into a black hole (one sufficiently massive that tidal forces don’t rip you to pieces and smear you into a plastic-wrap thin layer of goo, a supermassive black hole for example), you won’t notice a thing as you pass through the event horizon … and that’s because it’s not the event horizon to you! In other words, the location of the event horizon of a black hole depends upon who is doing the observing (that word ‘relativity’ really does some heavy lifting, if you’ll excuse the pun), and as you fall (freely) into a black hole, the event horizon is always ahead of you.

You’ll often read that the event horizon is where the escape velocity is c, the speed of light; that’s a not-too-bad description, but it’s better to say that the path of any ray of light, inside the event horizon, can never make it beyond that horizon.

If you watch – from afar! – something fall into a black hole, you’ll see that it gets closer and closer, and light from it gets redder and redder (increasingly redshifted), but it never actually reaches the event horizon. And that’s the closest we’ve come to testing the theoretical predictions of event horizons; we see stuff – mass ripped from the normal star in a binary, say – heading down into its massive companion, but we never see any sign of it hitting anything (like a solid surface). In the next decade or so it might be possible to study event horizons much more closely, by imaging SgrA* (the supermassive black hole – SMBH – at the center of our galaxy), or the SMBH in M87, with extremely high resolution.

The Universe Today article Black Hole Event Horizon Measured is about just this kind of black hole-normal star binary, Black Hole Flares as it Gobbles Matter is about observations of matter falling into a SMBH, and Maximizing Survival Time Inside the Event Horizon of a Black Hole describes some of the weird things about event horizons.

There’s more on event horizons in the Astronomy Cast Relativity, Relativity and More Relativity episode, and the Black Hole Surfaces one.

Sources: NASA Science, NASA Imagine the Universe