Planet 9 Can’t Run Forever. Two Asteroids Give Up Some Clues

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC); [Diagram created using WorldWide Telescope.]

Last year, Caltech astronomers Mike Brown and Konstantin Batygin found indirect evidence for the existence of a large planet in the outer reaches of our Solar System — likely located out past Pluto — and since then, the search has been on. The latest research continues to show signs of an unseen planet, the hypothetical Planet 9.

Astronomers using the Gran Telescopio CANARIAS (GTC) in the Canary Islands looked at two distant asteroids called Extreme Trans Neptunian Objects’ (ETNOs), and spectroscopic observations show and their present-day orbits could be the result of a past interaction with a large “superearth”-type object orbiting the Sun at a distance between 300 to 600 AU.

Researchers say the orbits of asteroids 2004 VN112 and 2013 RF98 suggest that the two were once a binary asteroid which separated after an encounter a large body, with a mass of between 10 and 20 Earth masses.

“The similar spectral gradients observed for the pair 2004 VN112 – 2013 RF98 suggests a common physical origin,” said Julia de León, the first author of a new paper, and who is an astrophysicist at the Instituto de Astrofísica de Canarias (IAC). “We are proposing the possibility that they were previously a binary asteroid which became unbound during an encounter with a more massive object.”

Sequence of images taken with the Gran Telescopio CANARIAS (GTC) to identify one of the ETNO´s studied in this article, 2013 RF98, where one can see how it moves during four consecutive nights. Below, right, visible spectra obtained with the GTC of the two objects 2004 VN112 and 2013 RF98. The red lines show the gradients of the spectra. Credit: Julia de León (IAC).

To test their hypothesis, the team performed thousands of simulations to see how the poles of the orbits would separate as time went on. The results of these simulations suggest that a possible Planet 9 could have separated the pair of asteroids around 5 to 10 million years ago.

de León said this could explain, in principle, how these two asteroids, starting as a pair orbiting one another, became gradually separated in their orbits after an encounter with a much more massive object at a particular moment in time.

The tale of Planet 9 started in 2014, when astronomers Chad Trujillo and Scott Shepard were studying the motions of large objects in the Kuiper Belt and realized that a large planet in the outer Solar System must be altering orbits of several ETNOs the in Kuiper Belt.

Brown and Batygin were looking to verify or refute the research of Trujillo and Shepard, and they painstakingly analyzed the movement of various KBOs. They found that six different objects all seem to follow a very similar elliptical orbit that points back to the same region in space.

All the bodies were found to be inclined at a plane of about 30-degrees different from almost everything else in the Solar System. Brown said the odds of these orbits all occurring randomly are about 1 in 100.

But calculations revealed the orbits could be influenced by a massive planet way out beyond the orbit of Pluto, about 200 times further than the distance from the Sun to the Earth. This planet would be Neptune-sized, roughly 10 times more massive than Earth.

It hasn’t been found yet, but the hunt is on by large telescopes around the world, and a new citizen science project allows people around the world to join in the search.

The latest findings of by de León and team could help point the way to where Planet 9 might be lurking.

Source: PhysOrg

Weekly Space Hangout – January 13, 2017: News Roundup Plus Update on Tabby’s Star!

Host: Fraser Cain (@fcain)

Guests:
Carolyn Collins Petersen (thespacewriter.com / space.about.com / @spacewriter )
Paul M. Sutter (pmsutter.com / @PaulMattSutter)
Kimberly Cartier ( KimberlyCartier.org / @AstroKimCartier )

Their stories this week:
New studies of Boyajian’s Star

Breakthrough Starshot hunting for planets

Probing the Nearby Space Between Stars

Looking for the stuff of life

A new star in 2022

We use a tool called Trello to submit and vote on stories we would like to see covered each week, and then Fraser will be selecting the stories from there. Here is the link to the Trello WSH page (http://bit.ly/WSHVote), which you can see without logging in. If you’d like to vote, just create a login and help us decide what to cover!

If you would like to join the Weekly Space Hangout Crew, visit their site here and sign up. They’re a great team who can help you join our online discussions!

If you would like to sign up for the AstronomyCast Solar Eclipse Escape, where you can meet Fraser and Pamela, plus WSH Crew and other fans, visit our site linked above and sign up!

We record the Weekly Space Hangout every Friday at 12:00 pm Pacific / 3:00 pm Eastern. You can watch us live on Universe Today, or the Universe Today YouTube page<

What are the Planets of the Solar System?

An illustration showing the 8 planets of the Solar System to scale Credit: NASA

At one time, humans believed that the Earth was the center of the Universe; that the Sun, Moon, planets and stars all revolved around us. It was only after centuries of ongoing observations and improved instrumentation that astronomers came to understand that we are in fact part a larger system of planets that revolve around the Sun. And it has only been within the last century that we’ve come to understand just how big our Solar System is.

And even now, we are still learning. In the past few decades, the total number of celestial bodies and moons that are known to orbit the Sun has expanded. We have also come to debate the definition of “planet” (a controversial topic indeed!) and introduced additional classifications – like dwarf planet, minor planet, plutoid, etc. – to account for new finds. So just how many planets are there and what is special about them? Let’s run through them one by one, shall we?

Mercury:

As you travel outward from the Sun, Mercury is the closest planet. It orbits the Sun at an average distance of 58 million km (36 million mi). Mercury is airless, and so without any significant atmosphere to hold in the heat, it has dramatic temperature differences. The side that faces the Sun experiences temperatures as high as 420 °C (788 °F), and then the side in shadow goes down to -173 °C (-279.4 °F).

MESSENGER image of Mercury from its third flyby (NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington)
MESSENGER image of Mercury from its third flyby. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Like Venus, Earth and Mars, Mercury is a terrestrial planet, which means it is composed largely of refractory minerals such as the silicates and metals such as iron and nickel. These elements are also differentiated between a metallic core and a silicate mantle and crust, with Mercury possessing a larger-than-average core. Multiple theories have been proposed to explain this, the most widely accepted being that the impact from a planetesimal in the past blew off much of its mantle material.

Mercury is the smallest planet in the Solar System, measuring just 4879 km across at its equator. However, it is second densest planet in the Solar System, with a density of 5.427 g/cm3 – which is the second only to Earth. Because of this, Mercury experiences a gravitational pull that is roughly 38% that of Earth’s (0.38 g).

Mercury also has the most eccentric orbit of any planet in the Solar System (0.205), which means its distance from the Sun ranges from 46 to 70 million km (29-43 million mi). The planet also takes 87.969 Earth days to complete an orbit. But with an average orbital speed of 47.362 km/s, Mercury also takes 58.646 days to complete a single rotation.

Combined with its eccentric orbit, this means that it takes 176 Earth days for the Sun to return to the same place in the sky (i.e. a solar day) on Mercury, which is twice as long as a single Hermian year. Mercury also has the lowest axial tilt of any planet in the Solar System – approximately 0.027 degrees – compared to Jupiter’s 3.1 degrees, which is the second smallest.

The MESSENGER spacecraft has been in orbit around Mercury since March 2011 – but its days are numbered. Image credit: NASA/JHUAPL/Carnegie Institution of Washington
The MESSENGER spacecraft has been in orbit around Mercury since March 2011 – but its days are numbered. Credit: NASA/JHUAPL/Carnegie Institution of Washington

Mercury has only been visited two times by spacecraft, the first being the Mariner 10 probe, which conducted a flyby of the planet back in the mid-1970s. It wasn’t until 2008 that another spacecraft from Earth made a close flyby of Mercury (the MESSENGER probe) which took new images of its surface, shed light on its geological history, and confirmed the presence of water ice and organic molecules in its northern polar region.

In summary, Mercury is made special by the fact it is small, eccentric, and varies between extremes of hot and cold. It’s also very mineral rich, and quite dense!

Venus:

Venus is the second planet in the Solar System, and is Earth’s virtual twin in terms of size and mass. With a mass of 4.8676×1024 kg and a mean radius of about 6,052 km, it is approximately 81.5% as massive as Earth and 95% as large. Like Earth (and Mercury and Mars), it is a terrestrial planet, composed of rocks and minerals that are differentiated.

But apart from these similarities, Venus is very different from Earth. Its atmosphere is composed primarily of carbon dioxide (96%), along with nitrogen and a few other gases. This dense cloud cloaks the planet, making surface observation very difficult, and helps heat it up to 460 °C (860 °F). The atmospheric pressure is also 92 times that of Earth’s atmosphere, and poisonous clouds of carbon dioxide and sulfuric acid rain are commonplace.

At a closest average distance of 41 million km (25,476,219 mi), Venus is the closest planet to Earth. Credit: NASA/JPL/Magellan
Venus’ similarity in size and mass has led to it being called “Earth’s sister planet’. Credit: NASA/JPL/Magellan

Venus orbits the Sun at an average distance of about 0.72 AU (108 million km; 67 million mi) with almost no eccentricity. In fact, with its farthest orbit (aphelion) of 0.728 AU (108,939,000 km) and closest orbit (perihelion) of 0.718 AU (107,477,000 km), it has the most circular orbit of any planet in the Solar System. The planet completes an orbit around the Sun every 224.65 days, meaning that a year on Venus is 61.5% as long as a year on Earth.

When Venus lies between Earth and the Sun, a position known as inferior conjunction, it makes the closest approach to Earth of any planet, at an average distance of 41 million km. This takes place, on average, once every 584 days, and is the reason why Venus is the closest planet to Earth. The planet completes an orbit around the Sun every 224.65 days, meaning that a year on Venus is 61.5% as long as a year on Earth.

Unlike most other planets in the Solar System, which rotate on their axes in an counter-clockwise direction, Venus rotates clockwise (called “retrograde” rotation). It also rotates very slowly, taking 243 Earth days to complete a single rotation. This is not only the slowest rotation period of any planet, it also means that a single day on Venus lasts longer than a Venusian year.

Venus’ atmosphere is also known to experience lightning storms. Since Venus does not experience rainfall (except in the form of sulfuric acid), it has been theorized that the lightning is being caused by volcanic eruptions. Several spacecraft have visited Venus, and a few landers have even made it to the surface to send back images of its hellish landscape. Even though there were made of metal, these landers only survived a few hours at best.

Venus is made special by the fact that it is very much like Earth, but also radically different. It’s thick atmosphere could crush a living being, its heat could melt lead, and its acid rain could dissolve flesh, bone and metal alike! It also rotates very slowly, and backwards relative to the other plants.

Earth:

Earth is our home, and the third planet from the Sun. With a mean radius of 6371 km and a mass of 5.97×1024 kg, it is the fifth largest and fifth most-massive planet in the Solar System. And with a mean density of 5.514 g/cm³, it is the densest planet in the Solar System. Like Mercury, Venus and Mars, Earth is a terrestrial planet.

But unlike these other planets, Earth’s core is differentiated between a solid inner core and liquid outer core. The outer core also spins in the opposite direction as the planet, which is believed to create a dynamo effect that gives Earth its protective magnetosphere. Combined with a atmosphere that is neither too thin nor too thick, Earth is the only planet in the Solar System known to support life.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

In terms of its orbit, Earth has a very minor eccentricity (approx. 0.0167) and ranges in its distance from the Sun between 147,095,000 km (0.983 AU) at perihelion to 151,930,000 km (1.015 AU) at aphelion. This works out to an average distance (aka. semi-major axis) of 149,598,261 km, which is the basis of a single Astronomical Unit (AU)

The Earth has an orbital period of 365.25 days, which is the equivalent of 1.000017 Julian years. This means that every four years (in what is known as a Leap Year), the Earth calendar must include an extra day. Though a single solar day on Earth is considered to be 24 hours long, our planet takes precisely 23h 56m and 4 s to complete a single sidereal rotation (0.997 Earth days).

Earth’s axis is also tilted 23.439281° away from the perpendicular of its orbital plane, which is responsible for producing seasonal variations on the planet’s surface with a period of one tropical year (365.24 solar days). In addition to producing variations in terms of temperature, this also results in variations in the amount of sunlight a hemisphere receives during the course of a year.

Earth has only a single moon: the Moon. Thanks to examinations of Moon rocks that were brought back to Earth by the Apollo missions, the predominant theory states that the Moon was created roughly 4.5 billion years ago from a collision between Earth and a Mars-sized object (known as Theia). This collision created a massive cloud of debris that began circling our planet, which eventually coalesced to form the Moon we see today.

A picture of Earth taken by Apollo 11 astronauts. Credit: NASA
A picture of Earth taken by Apollo 11 astronauts. Credit: NASA

What makes Earth special, you know, aside from the fact that it is our home and where we originated? It is the only planet in the Solar System where liquid, flowing water exists in abundance on its surface, has a viable atmosphere, and a protective magnetosphere. In other words, it is the only planet (or Solar body) that we know of where life can exist on the surface.

In addition, no planet in the Solar System has been studied as well as Earth, whether it be from the surface or from space. Thousands of spacecraft have been launched to study the planet, measuring its atmosphere, land masses, vegetation, water, and human impact. Our understanding of what makes our planet unique in our Solar System has helped in the search for Earth-like planets in other systems.

Mars:

The fourth planet from the Sun is Mars, which is also the second smallest planet in the Solar System. It has a radius of approximately 3,396 km at its equator, and 3,376 km at its polar regions – which is the equivalent of roughly 0.53 Earths. While it is roughly half the size of Earth, it’s mass – 6.4185 x 10²³ kg – is only 0.151 that of Earth’s. It’s density is also lower than Earths, which leads to it experiencing about 1/3rd Earth’s gravity (0.376 g).

It’s axial tilt is very similar to Earth’s, being inclined 25.19° to its orbital plane (Earth’s axial tilt is just over 23°), which means Mars also experiences seasons. Mars has almost no atmosphere to help trap heat from the Sun, and so temperatures can plunge to a low of -140 °C (-220 °F) in the Martian winter. However, at the height of summer, temperatures can get up to 20 °C (68 °F) during midday at the equator.

However, recent data obtained by the Curiosity rover and numerous orbiters have concluded that Mars once had a denser atmosphere. Its loss, according to data obtained by NASA’s Mars Atmosphere and Volatile Evolution (MAVEN), the atmosphere was stripped away by solar wind over the course of a 500 million year period, beginning 4.2 billion years ago.

At its greatest distance from the Sun (aphelion), Mars orbits at a distance of 1.666 AUs, or 249.2 million km. At perihelion, when it is closest to the Sun, it orbits at a distance of 1.3814 AUs, or 206.7 million km. At this distance, Mars takes 686.971 Earth days, the equivalent of 1.88 Earth years, to complete a rotation of the Sun. In Martian days (aka. Sols, which are equal to one day and 40 Earth minutes), a Martian year is 668.5991 Sols.

Like Mercury, Venus, and Earth, Mars is a terrestrial planet, composed mainly of silicate rock and metals that are differentiated between a core, mantle and crust. The red-orange appearance of the Martian surface is caused by iron oxide, more commonly known as hematite (or rust). The presence of other minerals in the surface dust allow for other common surface colors, including golden, brown, tan, green, and others.

Although liquid water cannot exist on Mars’ surface, owing to its thin atmosphere, large concentrations of ice water exist within the polar ice caps – Planum Boreum and Planum Australe. In addition, a permafrost mantle stretches from the pole to latitudes of about 60°, meaning that water exists beneath much of the Martian surface in the form of ice water. Radar data and soil samples have confirmed the presence of shallow subsurface water at the middle latitudes as well.

MSL Curiosity selfie on the surface of Mars. Image: NASA/JPL/Cal-Tech
MSL Curiosity selfie on the surface of Mars. Image: NASA/JPL/Cal-Tech

Mars has two tiny asteroid-sized moons: Phobos and Deimos. Because of their size and shape, the predominant theory is that Mars acquired these two moons after they were kicked out of the Asteroid Belt by Jupiter’s gravity.

Mars has been heavily studied by spacecraft. There are multiple rovers and landers currently on the surface and a small fleet of orbiters flying overhead. Recent missions include the Curiosity Rover, which gathered ample evidence on Mars’ water past, and the groundbreaking discovery of finding  organic molecules on the surface. Upcoming missions include NASA’s InSight lander and the Exomars rover.

Hence, Mars’ special nature lies in the fact that it also is terrestrial and lies within the outer edge of the Sun’s habitable zone. And whereas it is a cold, dry place today, it once had an thicker atmosphere and plentiful water on its surface.

Jupiter:

Mighty Jupiter is the fouth planet for our Sun and the biggest planet in our Solar System. Jupiter’s mass, volume, surface area and mean circumference are 1.8981 x 1027 kg, 1.43128 x 1015 km3, 6.1419 x 1010 km2, and 4.39264 x 105 km respectively. To put that in perspective, Jupiter diameter is roughly 11 times that of Earth, and 2.5 times the mass of all the other planets in the Solar System combined.

Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet's magnetic field. Credit: NASA, ESA, and J. Nichols (University of Leicester)
Jupiter has spectacular aurora, such as this view captured by the Hubble Space Telescope. Credit: NASA, ESA, and J. Nichols (University of Leicester)

But, being a gas giant, it has a relatively low density – 1.326 g/cm3 – which is less than one quarter of Earth’s. This means that while Jupiter’s volume is equivalent to about 1,321 Earths, it is only 318 times as massive. The low density is one way scientists are able to determine that it is made mostly of gases, though the debate still rages on what exists at its core (see below).

Jupiter orbits the Sun at an average distance (semi-major axis) of 778,299,000 km (5.2 AU), ranging from 740,550,000 km (4.95 AU) at perihelion and 816,040,000 km (5.455 AU) at aphelion. At this distance, Jupiter takes 11.8618 Earth years to complete a single orbit of the Sun. In other words, a single Jovian year lasts the equivalent of 4,332.59 Earth days.

However, Jupiter’s rotation is the fastest of all the Solar System’s planets, completing a rotation on its axis in slightly less than ten hours (9 hours, 55 minutes and 30 seconds to be exact). Therefore, a single Jovian year lasts 10,475.8 Jovian solar days. This orbital period is two-fifths that of Saturn, which means that the two largest planets in our Solar System form a 5:2 orbital resonance.

Much like Earth, Jupiter experiences auroras near its northern and southern poles. But on Jupiter, the auroral activity is much more intense and rarely ever stops. The intense radiation, Jupiter’s magnetic field, and the abundance of material from Io’s volcanoes that react with Jupiter’s ionosphere create a light show that is truly spectacular.

The Juno spacecraft isn't the first one to visit Jupiter. Galileo went there in the mid 90's, and Voyager 1 snapped a nice picture of the clouds on its mission. Image: NASA
The Juno spacecraft isn’t the first one to visit Jupiter. Galileo went there in the mid 90’s, and Voyager 1 snapped a nice picture of the clouds on its mission. Credit: NASA

Jupiter also experiences violent weather patterns. Wind speeds of 100 m/s (360 km/h) are common in zonal jets, and can reach as high as 620 kph (385 mph). Storms form within hours and can become thousands of km in diameter overnight. One storm, the Great Red Spot, has been raging since at least the late 1600s. The storm has been shrinking and expanding throughout its history; but in 2012, it was suggested that the Giant Red Spot might eventually disappear.

Jupiter is composed primarily of gaseous and liquid matter. It is the largest of the gas giants, and like them, is divided between a gaseous outer atmosphere and an interior that is made up of denser materials. It’s upper atmosphere is composed of about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules, and approx. 75% hydrogen and 24% helium by mass, with the remaining one percent consisting of other elements.

The interior contains denser materials, such that the distribution is roughly 71% hydrogen, 24% helium and 5% other elements by mass. It is believed that Jupiter’s core is a dense mix of elements – a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. The core has also been described as rocky, but this remains unknown as well.

Jupiter has been visited by several spacecraft, including NASA’s Pioneer 10 and Voyager spacecraft in 1973 and 1980, respectively; and by the Cassini and New Horizons spacecraft more recently. Until the recent arrival of Juno, only the Galileo spacecraft has ever gone into orbit around Jupiter, and it was crashed into the planet in 2003 to prevent it from contaminating one of Jupiter’s icy moons.

Illustration of Jupiter and the Galilean satellites. Credit: NASA
Illustration of Jupiter and the Galilean satellites. Credit: NASA

In short, Jupiter is massive and has massive storms. But compared to the planets of the inner Solar System, is it significantly less dense. Jupiter also has the most moons in the Solar System, with 67 confirmed and named moons orbiting it. But it is estimated that as many as 200 natural satellites may exist around the planet. Little wonder why this planet is named after the king of the gods.

Saturn:

Saturn is the second largest planet in the Solar System. With a mean radius of 58232±6 km, it is approximately 9.13 times the size of Earth. And at 5.6846×1026 kg, it is roughly 95.15 as massive. However, since it is a gas giant, it has significantly greater volume – 8.2713×1014 km3, which is equivalent to 763.59 Earths.

The sixth most distant planet, Saturn orbits the Sun at an average distance of 9 AU (1.4 billion km; 869.9 million miles). Due to its slight eccentricity, the perihelion and aphelion distances are 9.022 (1,353.6 million km; 841.3 million mi) and 10.053 AU (1,513,325,783 km; 940.13 million mi), on average respectively.

With an average orbital speed of 9.69 km/s, it takes Saturn 10,759 Earth days to complete a single revolution of the Sun. In other words, a single Cronian year is the equivalent of about 29.5 Earth years. However, as with Jupiter, Saturn’s visible features rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions.

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic
This portrait looking down on Saturn and its rings was created from images obtained by NASA’s Cassini spacecraft on Oct. 10th, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

As a gas giant, Saturn is predominantly composed of hydrogen and helium gas. With a mean density of 0.687 g/cm3, Saturn is the only planet in the Solar System that is less dense than water; which means that it lacks a definite surface, but is believed to have a solid core. This is due to the fact that Saturn’s temperature, pressure, and density all rise steadily toward the core.

Standard planetary models suggest that the interior of Saturn is similar to that of Jupiter, having a small rocky core surrounded by hydrogen and helium with trace amounts of various volatiles. This core is similar in composition to the Earth, but more dense due to the presence of metallic hydrogen, which as a result of the extreme pressure.

As a gas giant, the outer atmosphere of Saturn contains 96.3% molecular hydrogen and 3.25% helium by volume. Trace amounts of ammonia, acetylene, ethane, propane, phosphine and methane have been also detected in Saturn’s atmosphere. Like Jupiter, it also has a banded appearance, but Saturn’s bands are much fainter and wider near the equator.

On occasion, Saturn’s atmosphere exhibits long-lived ovals that are thousands of km wide, similar to what is commonly observed on Jupiter. Whereas Jupiter has the Great Red Spot, Saturn periodically has what’s known as the Great White Spot (aka. Great White Oval). This unique but short-lived phenomenon occurs once every Saturnian year, roughly every 30 Earth years, around the time of the northern hemisphere’s summer solstice.

 The huge storm churning through the atmosphere in Saturn's northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI
The huge storm churning through the atmosphere in Saturn’s northern hemisphere overtakes itself as it encircles the planet in this true-color view from NASA’s Cassini spacecraft. Image credit: NASA/JPL-Caltech/SSI

The persisting hexagonal wave pattern around the north pole was first noted in the Voyager images. The sides of the hexagon are each about 13,800 km (8,600 mi) long (which is longer than the diameter of the Earth) and the structure rotates with a period of 10h 39m 24s, which is assumed to be equal to the period of rotation of Saturn’s interior.

The south pole vortex, meanwhile, was first observed using the Hubble Space Telescope. These images indicated the presence of a jet stream, but not a hexagonal standing wave. These storms are estimated to be generating winds of 550 km/h, are comparable in size to Earth, and believed to have been going on for billions of years. In 2006, the Cassini space probe observed a hurricane-like storm that had a clearly defined eye. Such storms had not been observed on any planet other than Earth – even on Jupiter.

Of course, the most amazing feature of Saturn is its rings. These are made of particles of ice ranging in size from a grains of sand to the size of a car. Some scientists think the rings are only a few hundred million years old, while others think they could be as old as the Solar System itself.

Saturn has been visited by spacecraft 4 times: Pioneer 11, Voyager 1 and 2 were just flybys, but Cassini has actually gone into orbit around Saturn and has captured thousands of images of the planet and its moons. And speaking of moons, Saturn has a total of 62 moons discovered (so far), though estimates indicate that it might have as many as 150.

A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute
A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute

So like Jupiter, Saturn is a massive gas giant that experiences some very interesting weather patterns. It also has lots of moons and has a very low density. But what really makes Saturn stand out is its impressive ring system. Whereas every gas and ice giant has one, Saturn’s is visible to the naked eye and very beautiful to behold!

Uranus:

Next comes Uranus, the seventh planet from the Sun. With a mean radius of approximately 25,360 km and a mass of 8.68 × 1025 kg, Uranus is approximately 4 times the sizes of Earth and 63 times its volume. However, as a gas giant, its density (1.27 g/cm3) is significantly lower; hence, it is only 14.5 as massive as Earth.

The variation of Uranus’ distance from the Sun is also greater than that any other planet (not including dwarf planets or plutoids). Essentially, the gas giant’s distance from the Sun varies from 18.28 AU (2,735,118,100 km) at perihelion to 20.09 AU (3,006,224,700 km) at aphelion. At an average distance of 3 billion km from the Sun, it takes Uranus roughly 84 years (or 30,687 days) to complete a single orbit of the Sun.

The standard model of Uranus’s structure is that it consists of three layers: a rocky (silicate/iron–nickel) core in the center, an icy mantle in the middle and an outer envelope of gaseous hydrogen and helium. Much like Jupiter and Saturn, hydrogen and helium account for the majority of the atmosphere – approximately 83% and 15% – but only a small portion of the planet’s overall mass (0.5 to 1.5 Earth masses).

Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL).
Uranus as seen through the automated eyes of Voyager 2 in 1986. (Credit: NASA/JPL)

The third most abundant element is methane ice (CH4), which accounts for 2.3% of its composition and which accounts for the planet’s aquamarine or cyan coloring. Trace amounts of various hydrocarbons are also found in the stratosphere of Uranus, which are thought to be produced from methane and ultraviolent radiation-induced photolysis. They include ethane (C2H6), acetylene (C2H2), methylacetylene (CH3C2H), and diacetylene (C2HC2H).

In addition, spectroscopy has uncovered carbon monoxide and carbon dioxide in Uranus’ upper atmosphere, as well as the presence icy clouds of water vapor and other volatiles, such as ammonia and hydrogen sulfide. Because of this, Uranus and Neptune are considered a distinct class of giant planet – known as “Ice Giants” – since they are composed mainly of heavier volatile substances.

The rotational period of the interior of Uranus is 17 hours, 14 minutes. As with all giant planets, its upper atmosphere experiences strong winds in the direction of rotation. Hence its weather systems are also broken up into bands that rotate around the planet, which are driven by internal heat rising to the upper atmosphere.

As a result, winds on Uranus can reach up to 900 km/h (560 mph), creating massive storms like the one spotted by the Hubble Space Telescope in 2012. Similar to Jupiter’s Great Red Spot, this “Dark Spot” was a giant cloud vortex that measured 1,700 kilometers by 3,000 kilometers (1,100 miles by 1,900 miles).

Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory
Huge storms on Uranus were spotted by the Keck Observatory on Aug. 5 and Aug. 6, 2014. Credit: Imke de Pater (UC Berkeley), Pat Fry (University of Wisconsin), Keck Observatory

One unique feature of Uranus is that it rotates on its side. Whereas all of the Solar System’s planets are tilted on their axes to some degree, Uranus has the most extreme axial tilt of 98°. This leads to the radical seasons that the planet experiences, not to mention an unusual day-night cycle at the poles. At the equator, Uranus experiences normal days and nights; but at the poles, each experience 42 Earth years of day followed by 42 years of night.

Uranus was the first planet to be discovered with a telescope; it was first recognized as a planet in 1781 by William Herschel. Beyond Earth-based observations, only one spacecraft (Voyager 2) has ever studied Uranus up close. It passed by the planet in 1986, and captured the first close images. Uranus has 27 known moons.

Uranus’ special nature comes through in its natural beauty, its intense weather, its ring system and its impressive array of moons. And it’s compositions, being an “ice” giant, is what gives its aquamarine color. But perhaps mist interesting is its sideways rotation, which is unique among the Solar planets.

Neptune:

Neptune is the 8th and final planet in the Solar System, orbiting the Sun at a distance of 29.81 AU (4.459 x 109 km) at perihelion and 30.33 AU (4.537 x 109 km) at aphelion. With a mean radius of 24,622 ± 19 km, Neptune is the fourth largest planet in the Solar System and four times as large as Earth. But with a mass of 1.0243×1026 kg – which is roughly 17 times that of Earth – it is the third most massive, outranking Uranus.

Neptune's system of moons and rings visualized. Credit: SETI
Neptune’s system of moons and rings visualized. Credit: SETI

Neptune takes 16 h 6 min 36 s (0.6713 days) to complete a single sidereal rotation, and 164.8 Earth years to complete a single orbit around the Sun. This means that a single day lasts 67% as long on Neptune, whereas a year is the equivalent of approximately 60,190 Earth days (or 89,666 Neptunian days).

Due to its smaller size and higher concentrations of volatiles relative to Jupiter and Saturn, Neptune (much like Uranus) is often referred to as an “ice giant” – a subclass of a giant planet. Also like Uranus, Neptune’s internal structure is differentiated between a rocky core consisting of silicates and metals; a mantle consisting of water, ammonia and methane ices; and an atmosphere consisting of hydrogen, helium and methane gas.

The core of Neptune is composed of iron, nickel and silicates, with an interior model giving it a mass about 1.2 times that of Earth. The pressure at the center is estimated to be 7 Mbar (700 GPa), about twice as high as that at the center of Earth, and with temperatures as high as 5,400 K. At a depth of 7000 km, the conditions may be such that methane decomposes into diamond crystals that rain downwards like hailstones.

Because Neptune’s axial tilt (28.32°) is similar to that of Earth (~23°) and Mars (~25°), the planet experiences similar seasonal changes. Combined with its long orbital period, this means that the seasons last for forty Earth years. Also owing to its axial tilt being comparable to Earth’s is the fact that the variation in the length of its day over the course of the year is not any more extreme than it on Earth.

Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL
Reconstruction of Voyager 2 images showing the Great Black spot (top left), Scooter (middle), and the Small Black Spot (lower right). Credit: NASA/JPL

Just like Jupiter and Saturn, Neptune has bands of storms that circle the planet. Astronomers have clocked winds on Neptune traveling at 2,100 km/hour, which is believed to be due to Neptune’s cold temperatures – which may decrease the friction in the system, During its 1989 flyby, NASA’s Voyager 2 spacecraft discovered the Great Dark Spot on Neptune.

Similar to Jupiter’s Great Red Spot, this is an anti-cyclonic storm measuring 13,000 km x 6,600 km across. A few years later, however, the Hubble Space Telescope failed to see the Great Dark Spot, but it did see different storms. This might mean that storms on Neptune don’t last as long as they do on Jupiter or even Saturn.

The more active weather on Neptune might be due, in part, to its higher internal heat. Although Neptune is much more distant than Uranus from the Sun, receiving 40% less sunlight, temperatures on the surface of the two planets are roughly similar. In fact, Neptune radiates 2.61 times as much energy as it receives from the Sun. This is enough heat to help drive the fastest winds in the Solar System.

Neptune is the second planet discovered in modern times. It was discovered at the same time by both Urbain Le Verrier and John Couch Adams. Neptune has only ever been visited by one spacecraft, Voyager 2, which made a fly by in August, 1989. Neptune has 13 known moons. Th largest and most famous of these is Triton, which is believed to be a former KBO that was captured by Neptune’s gravity.

Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS
Global Color Mosaic of Triton, taken by Voyager 2 in 1989. Credit: NASA/JPL/USGS

So much like Uranus, Neptune has a ring system, some intense weather patterns, and an impressive array of moons. Also like Uranus, Neptune’s composition allows for its aquamarine color; except that in Neptune’s case, this color is more intense and vivid. In addition, Neptune experiences some temperature anomalies that are yet to be explained. And let’s not forgt the raining diamonds!

And those are the planets in the Solar System thank you for joining the tour! Unfortunately, Pluto isn’t a planet any more, hence why it was not listed. We know, we know, take it up with the IAU!

We have written many interesting articles about the Solar System here at Universe Today. Here’s the Solar System GuideWhat is the Solar System?, Interesting Facts About the Solar System, What Was Here Before the Solar System?, How Big is the Solar System?, and Is the Solar System Really a Vortex?

If you’d like more information on the Solar System, visit the Nine Planets, and Solar Views.

We have recorded a whole series of podcasts about the Solar System at Astronomy Cast.

Sources:

What are the Different Masses of the Planets?

Planets and other objects in our Solar System. Credit: NASA.

It is a well known fact that the planets of the Solar System vary considerably in terms of size. For instance, the planets of the inner Solar System are smaller and denser than the gas/ice giants of the outer Solar System. And in some cases, planets can actually be smaller than the largest moons. But a planet’s size is not necessarily proportional to its mass. In the end, how massive a planet is has more to do with its composition and density.

So while a planet like Mercury may be smaller in size than Jupiter’s moon Ganymede or Saturn’s moon Titan, it is more than twice as massive than they are. And while Jupiter is 318 times as massive as Earth, its composition and density mean that it is only 11.21 times Earth’s size. Let’s go over the planet’s one by one and see just how massive they are, shall we?

Mercury:

Mercury is the Solar System’s smallest planet, with an average diameter of 4879 km (3031.67 mi). It is also one of its densest at 5.427 g/cm3, which is second only to Earth. As a terrestrial planet, it is composed of silicate rock and minerals and is differentiated between an iron core and a silicate mantle and crust. But unlike its peers (Venus, Earth and Mars), it has an abnormally large metallic core relative to its crust and mantle.

All told, Mercury’s mass is approximately 0.330 x 1024 kg, which works out to 330,000,000 trillion metric tons (or the equivalent of 0.055 Earths). Combined with its density and size, Mercury has a surface gravity of 3.7 m/s² (or 0.38 g).

Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL
Internal structure of Mercury: 1. Crust: 100–300 km thick 2. Mantle: 600 km thick 3. Core: 1,800 km radius. Credit: MASA/JPL

Venus:

Venus, otherwise known as “Earth’s Sister Planet”, is so-named because of its similarities in composition, size, and mass to our own. Like Earth, Mercury and Mars, it is a terrestrial planet, and hence quite dense. In fact, with a density of 5.243 g/cm³, it is the third densest planet in the Solar System (behind Earth and Mercury). Its average radius is roughly 6,050 km (3759.3 mi), which is the equivalent of 0.95 Earths.

And when it comes to mass, the planet weighs in at a hefty 4.87 x 1024 kg, or 4,870,000,000 trillion metric tons. Not surprisingly, this is the equivalent of 0.815 Earths, making it the second most massive terrestrial planet in the Solar System. Combined with its density and size, this means that Venus also has comparable gravity to Earth – roughly 8.87 m/s², or 0.9 g.

Earth:

Like the other planets of the inner Solar System, Earth is also a terrestrial planet, composed of metals and silicate rocks differentiated between an iron core and a silicate mantle and crust. Of the terrestrial planets, it is the largest and densest, with an average radius of 6,371.0 km (3,958.8 mi) and a mean of density of 5.514 g/cm3.

The Earth's layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com
The Earth’s layers, showing the Inner and Outer Core, the Mantle, and Crust. Credit: discovermagazine.com

And at 5.97 x 1024 kg (which works out to 5,970,000,000,000 trillion metric tons) Earth is the most massive of all the terrestrial planets. Combined with its size and density, Earth experiences the surface gravity that we are all familiar with – 9.8 m/s², or 1 g.

Mars:

Mars is the third largest terrestrial planet, and the second smallest planet in our Solar System. Like the others, it is composed of metals and silicate rocks that are differentiated between a iron core and a silicate mantle and crust. But while it is roughly half the size of Earth (with a mean diameter of 6792 km, or 4220.35 mi), it is only one-tenth as massive.

In short, Mars has a mass of 0.642 x1024 kg, which works out to 642,000,000 trillion metric tons, or roughly 0.11 the mass of Earth. Combined with its size and density – 3.9335 g/cm³ (which is roughly 0.71 times that of Earth’s) – Mars has a surface gravity of 3.711 m/s² (or 0.376 g).

Jupiter:

Jupiter is the largest planet in the Solar System. With a mean diameter of 142,984 km, it is big enough to fit all the other planets (except Saturn) inside itself, and big enough to fit Earth 11.8 times over. But with a mass of 1898 x 1024 kg (or 1,898,000,000,000 trillion metric tons), Jupiter is more massive than all the other planets in the Solar System combined – 2.5 times more massive, to be exact.

upiter's structure and composition. (Image Credit: Kelvinsong CC by S.A. 3.0)
Jupiter’s structure and composition. (Image Credit: Kelvinsong CC by S.A. 3.0)

However, as a gas giant, it has a lower overall density than the terrestrial planets. It’s mean density is 1.326 g/cm, but this increases considerably the further one ventures towards the core. And though Jupiter does not have a true surface, if one were to position themselves within its atmosphere where the pressure is the same as Earth’s at sea level (1 bar), they would experience a gravitational pull of 24.79 m/s2 (2.528 g).

Saturn:

Saturn is the second largest of the gas giants; with a mean diameter of 120,536 km, it is just slightly smaller than Jupiter. However, it is significantly less massive than its Jovian cousin, with a mass of 569 x 1024 kg (or 569,000,000,000 trillion metric tons). Still, this makes Saturn the second most-massive planet in the Solar System, with 95 times the mass of Earth.

Much like Jupiter, Saturn has a low mean density due to its composition. In fact, with an average density of 0.687 g/cm³, Saturn is the only planet in the Solar System that is less dense than water (1 g/cm³).  But of course, like all gas giants, its density increases considerably the further one ventures towards the core. Combined with its size and mass, Saturn has a “surface” gravity that is just slightly higher than Earth’s – 10.44 m/s², or 1.065 g.

Diagram of Saturn's interior. Credit: Kelvinsong/Wikipedia Commons
Diagram of Saturn’s interior. Credit: Kelvinsong/Wikipedia Commons

Uranus:

With a mean diameter of 51,118 km, Uranus is the third largest planet in the Solar System. But with a mass of 86.8 x 1024 kg (86,800,000,000 trillion metric tons) it is the fourth most massive – which is 14.5 times the mass of Earth. This is due to its mean density of 1.271 g/cm3, which is about three quarters of what Neptune’s is. Between its size, mass, and density, Uranus’ gravity works out to 8.69 m/s2, which is 0.886 g.

Neptune:

Neptune is significantly larger than Earth; at 49,528 km, it is about four times Earth’s size. And with a mass of 102 x 1024 kg (or 102,000,000,000 trillion metric tons) it is also more massive – about 17 times more to be exact. This makes Neptune the third most massive planet in the Solar System; while its density is the greatest of any gas giant (1.638 g/cm3). Combined, this works out to a “surface” gravity of 11.15 m/s2 (1.14 g).

As you can see, the planets of the Solar System range considerably in terms of mass. But when you factor in their variations in density, you can see how a planets mass is not always proportionate to its size. In short, while some planets may be a few times larger than others, they are can have many, many times more mass.

We have written many interesting articles about the planets here at Universe. For instance, here’s Interesting Facts About the Solar System, What are the Colors of the Planets?, What are the Signs of the Planets?, How Dense are the Planets?, and What are the Diameters of the Planets?.

For more information, check out Nine Planets overview of the Solar System, NASA’s Solar System Exploration, and use this site to find out what you would weigh on other planets.

Astronomy Cast has episodes on all of the planets. Here’s Episode 49: Mercury to start!

What Are The Diameters of the Planets?

Planets in the Solar System. Image credit: NASA/JPL/IAU

The planets of our Solar System vary considerably in size and shape. Some planets are small enough that they are comparable in diameter to some of our larger moons – i.e. Mercury is smaller than Jupiter’s moon Ganymede and Saturn’s moon Titan. Meanwhile, others like Jupiter are so big that they are larger in diameter than most of the others combined.

In addition, some planets are wider at the equator than they are at the poles. This is due to a combination of the planets composition and their rotational speed. As a result, some planets are almost perfectly spherical while others are oblate spheroids (i.e. experience some flattening at the poles). Let us examine them one by one, shall we?

Mercury:

With a diameter of 4,879 km (3031.67 mi), Mercury is the smallest planet in our Solar System. In fact, Mercury is not much larger than Earth’s own Moon – which has a diameter of 3,474 km (2158.64 mi). At 5,268 km (3,273 mi) in diameter, Jupiter’s moon of Ganymede is also larger, as is Saturn’s moon Titan – which is 5,152 km (3201.34 mi) in diameter.

Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Image Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington
Mercury, as imaged by the MESSENGER spacecraft, revealing parts of the never seen by human eyes. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

As with the other planets in the inner Solar System (Venus, Earth, and Mars), Mercury is a terrestrial planet, which means it is composed primarily of metals and silicate rocks that are differentiated into an iron-rich core and a silicate mantle and crust.

Also, due to the fact that Mercury has a very slow sidereal rotational period, taking 58.646 days to complete a single rotation on its axis, Mercury experiences no flattening at the poles. This means that the planet is almost a perfect sphere and has the same diameter whether it is measured from pole to pole or around its equator.

Venus:

Venus is often referred to as Earth’s “sister planet“, and not without good reason. At 12,104 km (7521 mi) in diameter, it is almost the same size as Earth. But unlike Earth, Venus experiences no flattening at the poles, which means that it almost perfectly circular. As with Mercury, this is due to Venus’ slow sidereal rotation period, taking 243.025 days to rotate once on its axis.

The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL
The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL

Earth:

With a mean diameter of 12,756 km (7926 mi), Earth is the largest terrestrial planet in the Solar System and the fifth largest planet overall. However, due to flattening at its poles (0.00335), Earth is not a perfect sphere, but an oblate spheroid. As a result, its polar diameter differs from its equatorial diameter, but only by about 41 km (25.5 mi)

In short, Earth measures 12713.6 km (7900 mi) in diameter from pole to pole, and 12756.2 km (7926.3 mi) around its equator. Once again, this is due to Earth’s sidereal rotational period, which takes a relatively short 23 hours, 58 minutes and 4.1 seconds to complete a single rotation on its axis.

Mars:

Mars is often referred to as “Earth’s twin”; and again, for good reason. Like Earth, Mars experiences flattening at its poles (0.00589), which is due to its relatively rapid sidereal rotational period (24 hours, 37 minutes and 22 seconds, or 1.025957 Earth days).

As a result, it experiences a bulge at its equator which leads to a variation of 40 km (25 mi) between its polar radius and equatorial radius. This works out to Mars having a mean diameter of 6779 km (4212.275 mi), varying between 6752.4 km (4195.75 mi) between its poles and 6792.4 km (4220.6 mi) at its equator.

Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech
Mosaic of the Valles Marineris hemisphere of Mars, similar to what one would see from orbital distance of 2500 km. Credit: NASA/JPL-Caltech

Jupiter:

Jupiter is the largest planet in the Solar System, measuring some 142,984 km (88,846 mi) in diameter. Again, this its mean diameter, since Jupiter experiences some rather significant flattening at the poles (0.06487). This is due to its rapid rotational period, with Jupiter taking just 9 hours 55 minutes and 30 seconds to complete a single rotation on its axis.

Combined with the fact that Jupiter is a gas giant, this means the planet experiences significant bulging at its equator. Basically, it varies in diameter from 133,708 km (83,082.3 mi) when measured from pole to pole, and 142,984 km (88,846 mi) when measured around the equator. This is a difference of 9276 km (5763.8 mi), one of the most pronounced in the Solar System.

 Saturn:

With a mean diameter of 120,536 km (74897.6 mi), Saturn is the second largest planet in the Solar System. Like Jupiter, it experiences significant flattening at its poles (0.09796) due to its high rotational velocity (10 hours and 33 minutes) and the fact that it is a gas giant. This means that it varies in diameter from 108,728 km (67560.447 mi) when measured at the poles and 120,536 km (74,897.6 mi) when measured at the equator. This is a difference of almost 12,000 km, the greatest of all planets.

This portrait looking down on Saturn and its rings was created from images obtained by NASA's Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic
This portrait looking down on Saturn and its rings was created from images obtained by NASA’s Cassini spacecraft on Oct. 10, 2013. Credit: NASA/JPL-Caltech/Space Science Institute/G. Ugarkovic

Uranus:

Uranus has a mean diameter of 50,724 km (31,518.43 mi), making it the third largest planet in the Solar System. But due to its rapid rotational velocity – the planet takes 17 hours 14 minutes and 24 seconds to complete a single rotation – and its composition, the planet experiences a significant polar flattening (0.0229). This leads to a variation in diameter of 49,946 km (31,035 mi) at the poles and 51,118 km (31763.25 mi) at the equator – a difference of 1172 km (728.25 mi).

Neptune:

Lastly, there is Neptune, which has a mean diameter of 49,244 km (30598.8 mi). But like all the other gas giants, this varies due to its rapid rotational period (16 hours, 6 minutes and 36 seconds) and composition, and subsequent flattening at the poles (0.0171). As a result, the planet experiences a variation of 846 km (525.68 mi), measuring 48,682 km (30249.59 mi) at the poles and 49,528 km (30775.27 mi) at the equator.

In summary, the planets of our Solar System vary in diameter due to differences in their composition and the speed of their rotation. In short, terrestrial planets tend to be smaller than gas giants, and gas giants tend to spin faster than terrestrial worlds. Between these two factors, the worlds we know range between near-perfect spheres and flattened spheres.

We have written many articles about the Solar System here at Universe Today. Here’s Interesting Facts about the Solar SystemHow Long Is A Day On The Other Planets Of The Solar System?, What Are the Colors of the Planets?, How Long Is A Year On The Other Planets?, What Is The Atmosphere Like On Other Planets?, and How Strong is Gravity on Other Planets?

For more information of the planets, here is a look at the eight planets and some fact sheets about the planets from NASA.

Astronomy Cast has episodes on all the planets. Here is Mercury to start out with.

Thanks, Comet Pluto. Solar System Nomenclature Needs A Major Rethink

New Horizon's July 2015 flyby of Pluto captured this iconic image of the heart-shaped region called Tombaugh Regio. Credit: NASA/JHUAPL/SwRI.

Pluto can’t seem to catch a break lately. After being reclassified in 2006 by the International Astronomical Union, it seemed that what had been the 9th planet of the Solar System was now relegated to the status of “dwarf planet” with the likes of Ceres, Eris, Haumea, and Makemake. Then came the recent announcements that the title of “Planet 9” may belong to an object ten times the mass of Earth located 700 AU from our Sun.

And now, new research has been produced that indicates that Pluto may need to be reclassified again. Using data provided by the New Horizons mission, researchers have shown that Pluto’s interaction with the Sun’s solar wind is unlike anything observed in the Solar System thus far. As a result, it would seem that the debate over how to classify Pluto, and indeed all astronomical bodies, is not yet over.

Continue reading “Thanks, Comet Pluto. Solar System Nomenclature Needs A Major Rethink”

Three New Earth-sized Planets Found Just 40 Light-Years Away

Artist's impression of rocky exoplanets orbiting Gliese 832, a red dwarf star just 16 light-years from Earth. Credit: ESO/M. Kornmesser/N. Risinger (skysurvey.org).

Three more potentially Earthlike worlds have been discovered in our galactic backyard, announced online today by the European Southern Observatory. Researchers using the 60-cm TRAPPIST telescope at ESO’s La Silla observatory in Chile have identified three Earth-sized exoplanets orbiting a star just 40 light-years away.

The star, originally classified as 2MASS J23062928-0502285 but now known more conveniently as TRAPPIST-1, is a dim “ultracool” red dwarf star only .05% as bright as our Sun . Located in the constellation Aquarius, it’s now the 37th-farthest star known to host orbiting exoplanets.

The exoplanets were discovered via the transit method (TRAPPIST stands for Transiting Planets and Planetesimals Small Telescope) through which the light from a star is observed to dim slightly by planets passing in front of it from our point of view. This is the same method that NASA’s Kepler spacecraft has used to find over 1,000 confirmed exoplanets.

Location of TRAPPIST-1 in the constellation Aquarius. Credit: ESO/IAU and Sky & Telescope.
Location of TRAPPIST-1 in the constellation Aquarius. Credit: ESO/IAU and Sky & Telescope.

As an ultracool dwarf TRAPPIST-1 is a very small and dim and isn’t easily visible from Earth, but it’s its very dimness that has allowed its planets to be discovered with existing technology. Their subtle silhouettes may have been lost in the glare of larger, brighter stars.

Follow-up measurements of the three exoplanets indicated that they are all approximately Earth-sized and have temperatures ranging from Earthlike to Venuslike (which is, admittedly, a fairly large range.) They orbit their host star very closely with periods measured in Earth days, not years.

“With such short orbital periods, the planets are between 20 and 100 times closer to their star than the Earth to the Sun,” said Michael Gillon, lead author of the research paper. “The structure of this planetary system is much more similar in scale to the system of Jupiter’s moons than to that of the Solar System.”

Structure of the TRAPPIST-1 exosystem. The green is the star's habitable zone. Credit: PHL.
Structure of the TRAPPIST-1 exosystem. The green is the star’s habitable zone. Credit: PHL.

Although these three new exoplanets are Earth-sized they do not yet classify as “potentially habitable,” at least by the standards of the Planetary Habitability Laboratory (PHL) operated by the University of Puerto Rico at Arecibo. The planets fall outside PHL’s required habitable zone; two are too close to the host star and one is too far away.

In addition there are certain factors that planets orbiting ultracool dwarfs would have to contend with in order to be friendly to life, not the least of which is the exposure to energetic outbursts from solar flares.

This does not guarantee that the exoplanets are completely uninhabitable, though; it’s entirely possible that there are regions on or within them where life could exist, not unlike Mars or some of the moons in our own Solar System.

The exoplanets are all likely tidally locked in their orbits, so even though the closest two are too hot on their star-facing side and too cold on the other, there may be regions along the east or west terminators that maintain a climate conducive to life.

“Now we have to investigate if they’re habitable,” said co-author Julien de Wit at MIT in Cambridge, Mass. “We will investigate what kind of atmosphere they have, and then will search for biomarkers and signs of life.”

Artist's impression of the view from the most distant exoplanet discovered around the red dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser.
Artist’s impression of the view from the most distant exoplanet discovered around the dwarf star TRAPPIST-1. Credit: ESO/M. Kornmesser.

Discovering three planets orbiting such a small yet extremely common type of star hints that there are likely many, many more such worlds in our galaxy and the Universe as a whole.

“So far, the existence of such ‘red worlds’ orbiting ultra-cool dwarf stars was purely theoretical, but now we have not just one lonely planet around such a faint red star but a complete system of three planets,” said study co-author Emmanuel Jehin.

The team’s research was presented in a paper entitled “Temperate Earth-sized planets transiting a nearby ultracool dwarf star” and will be published in Nature.

Source: ESO, PHL, and MIT

________________

Note: the original version of this article described 2MASS J23062928-0502285 (TRAPPIST-1) as a brown dwarf based on its classification on the Simbad archive. But at M8V it is “definitely a star,” according to co-author Julien de Wit in an email, although at the very low end of the red dwarf line. Corrections have been made above.

Who Discovered Gravity?

William Blake's Newton (1795), depicted as a divine geometer. Credit: William Blake Archive/Wikipedia

Four fundamental forces govern all interactions within the Universe. They are weak nuclear forces, strong nuclear forces, electromagnetism, and gravity. Of these, gravity is perhaps the most mysterious. While it has been understood for some time how this law of physics operates on the macro-scale – governing our Solar System, galaxies, and superclusters – how it interacts with the three other fundamental forces remains a mystery.

Naturally, human beings have had a basic understanding of this force since time immemorial. And when it comes to our modern understanding of gravity, credit is owed to one man who deciphered its properties and how it governs all things great and small – Sir Isaac Newton. Thanks to this 17th century English physicist and mathematician, our understanding of the Universe and the laws that govern it would forever be changed.

While we are all familiar with the iconic image of a man sitting beneath an apple tree and having one fall on his head, Newton’s theories on gravity also represented a culmination of years worth of research, which in turn was based on centuries of accumulated knowledge. He would present these theories in his magnum opus, Philosophiae Naturalis Principia Mathematica (“Mathematical Principles of Natural Philosophy”), which was first published in 1687.

In this volume, Newton laid out what would come to be known as his Three Laws of Motion, which were derived from Johannes Kepler’s Laws of Planetary Motion and his own mathematical description of gravity.  These laws would lay the foundation of classical mechanics, and would remain unchallenged for centuries – until the 20th century and the emergence of Einstein’s Theory of Relativity.

Newton's own copy of his Principia, with hand-written corrections for the second edition. Credit: Trinity Cambridge/Andrew Dunn
Newton’s own copy of his Principia, with hand-written corrections for the second edition. Credit: Trinity Cambridge/Andrew Dunn

Physics by 17th Century:

The 17th century was a very auspicious time for the sciences, with major breakthroughs occurring in the fields of mathematics, physics, astronomy, biology and chemistry. Some of the greatest developments in the period include the development of the heliocentric model of the Solar System by Nicolaus Copernicus, the pioneering work with telescopes and observational astronomy by Galileo Galilei, and the development of modern optics.

It was also during this period that Johannes Kepler developed his Laws of Planetary Motion. Formulated between 1609 and 1619, these laws described the motion of the then-known planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) around the Sun. They stated that:

  • Planets move around the Sun in ellipses, with the Sun at one focus
  • The line connecting the Sun to a planet sweeps equal areas in equal times.
  • The square of the orbital period of a planet is proportional to the cube (3rd power) of the mean distance from the Sun in (or in other words–of the”semi-major axis” of the ellipse, half the sum of smallest and greatest distance from the Sun).

These laws resolved the remaining mathematical issues raised by Copernicus’ heliocentric model, thus removing all doubt that it was the correct model of the Universe. Working from these, Sir Isaac Newton began considering gravitation and its effect on the orbits of planets.

A comparison of the geocentric and heliocentric models of the universe. Credit: history.ucsb.edu
A comparison of the geocentric and heliocentric models of the universe. Credit: history.ucsb.edu

Newton’s Three Laws:

In 1678, Newton suffered a complete nervous breakdown due to overwork and a feud with fellow astronomer Robert Hooke. For the next few years, he withdrew from correspondence with other scientists, except where they initiated it, and renewed his interest in mechanics and astronomy. In the winter of 1680-81, the appearance of a comet, about which he corresponded with John Flamsteed (England’s Astronomer Royal) also renewed his interest in astronomy.

After reviewing Kepler’s Laws of Motion, Newton developed a mathematical proof that the elliptical form of planetary orbits would result from a centripetal force inversely proportional to the square of the radius vector. Newton communicated these results to Edmond Halley (discoverer of “Haley’s Comet”) and to the Royal Society in his De motu corporum in gyrum.

This tract, published in 1684, contained the seed of what Newton would expand to form his magnum opus, the Philosophiae Naturalis Principia Mathematica. This treatise, which was published in July of 1687, contained Newton’s three laws of motion, which stated that:

  • When viewed in an inertial reference frame, an object either remains at rest or continues to move at a constant velocity, unless acted upon by an external force.
  • The vector sum of the external forces (F) on an object is equal to the mass (m) of that object multiplied by the acceleration vector (a) of the object. In mathematical form, this is expressed as: F=ma
  • When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

Together, these laws described the relationship between any object, the forces acting upon it and the resulting motion, laying the foundation for classical mechanics. The laws also allowed Newton to calculate the mass of each planet, the flattening of the Earth at the poles, and the bulge at the equator, and how the gravitational pull of the Sun and Moon create the Earth’s tides.

In the same work, Newton presented a calculus-like method of geometrical analysis using ‘first and last ratios’, worked out the speed of sound in air (based on Boyle’s Law), accounted for the procession of the equinoxes (which he showed were a result of the Moon’s gravitational attraction to the Earth), initiated the gravitational study of the irregularities in the motion of the moon, provided a theory for the determination of the orbits of comets, and much more.

Newton and the “Apple Incident”:

The story of Newton coming up with his theory of universal gravitation as a result of an apple falling on his head has become a staple of popular culture. And while it has often been argued that the story is apocryphal and Newton did not devise his theory at any one moment, Newton himself told the story many times and claimed that the incident had inspired him.

In addition, the writing’s of William Stukeley – an English clergyman, antiquarian and fellow member of the Royal Society – have confirmed the story. But rather than the comical representation of the apple striking Newton on the head, Stukeley described in his Memoirs of Sir Isaac Newton’s Life (1752) a conversation in which Newton described pondering the nature of gravity while watching an apple fall.

“…we went into the garden, & drank thea under the shade of some appletrees; only he, & my self. amidst other discourse, he told me, he was just in the same situation, as when formerly, the notion of gravitation came into his mind. “why should that apple always descend perpendicularly to the ground,” thought he to himself; occasion’d by the fall of an apple…”

John Conduitt, Newton’s assistant at the Royal Mint (who eventually married his niece), also described hearing the story in his own account of Newton’s life. According to Conduitt, the incident took place in 1666 when Newton was traveling to meet his mother in Lincolnshire. While meandering in the garden, he contemplated how gravity’s influence extended far beyond Earth, responsible for the falling of apple as well as the Moon’s orbit.

Similarly, Voltaire wrote n his Essay on Epic Poetry (1727) that Newton had first thought of the system of gravitation while walking in his garden and watching an apple fall from a tree. This is consistent with Newton’s notes from the 1660s, which show that he was grappling with the idea of how terrestrial gravity extends, in an inverse-square proportion, to the Moon.

Sapling of the reputed original tree that inspired Sir Isaac Newton to consider gravitation. Credit: Wikipedia Commons/Loodog
Sapling of the reputed original tree that inspired Sir Isaac Newton to consider gravitation. Credit: Wikipedia Commons/Loodog

However, it would take him two more decades to fully develop his theories to the point that he was able to offer mathematical proofs, as demonstrated in the Principia. Once that was complete, he deduced that the same force that makes an object fall to the ground was responsible for other orbital motions. Hence, he named it “universal gravitation”.

Various trees are claimed to be “the” apple tree which Newton describes. The King’s School, Grantham, claims their school purchased the original tree, uprooted it, and transported it to the headmaster’s garden some years later. However, the National Trust, which holds the Woolsthorpe Manor (where Newton grew up) in trust, claims that the tree still resides in their garden. A descendant of the original tree can be seen growing outside the main gate of Trinity College, Cambridge, below the room Newton lived in when he studied there.

Newton’s work would have a profound effect on the sciences, with its principles remaining canon for the following 200 years. It also informed the concept of universal gravitation, which became the mainstay of modern astronomy, and would not be revised until the 20th century – with the discovery of quantum mechanics and Einstein’s theory of General Relativity.

We have written many interesting articles about gravity here at Universe Today. Here is Who was Sir Isaac Newton?, Who Was Galileo Galilei?, What Is the Force of Gravity?, and What is the Gravitational Constant?

Astronomy Cast has some two good episodes on the subject. Here’s Episode 37: Gravitational Lensing, and Episode 102: Gravity,

Sources:

How Do We Know There’s a Planet 9?

How Do We Know There’s a Planet 9?

At this point, I think the astronomy textbook publishers should just give up. They’d like to tell you how many planets there are in the Solar System, they really would. But astronomers just can’t stop discovering new worlds, and messing up the numbers.

Things were simple when there were only 6 planets. The 5 visible with the unaided eye, and the Earth, of course. Then Uranus was discovered in 1781 by William Herschel, which made it 7. Then a bunch of asteroids, like Ceres, Vesta and Pallas pushed the number into the teens until astronomers realized these were probably a whole new class of objects. Back to 7.

Then Neptune in 1846 by Urbain Le Verrier and Johann Galle, which makes 8. Then Pluto in 1930 and we have our familiar 9.

But astronomy marches onward. Eris was discovered in 2005, which caused astronomers to create a whole new classification of dwarf planet, and ultimately downgrading Pluto. Back to 8.

It seriously looked like 8 was going to be the final number, and the textbook writers could return to their computers for one last update.

A predicted consequence of Planet Nine is that a second set of confined objects should also exist. These objects are forced into positions at right angles to Planet Nine and into orbits that are perpendicular to the plane of the solar system. Five known objects (blue) fit this prediction precisely. Credit: Caltech/R. Hurt (IPAC) [Diagram was created using WorldWide Telescope.]
A predicted consequence of Planet Nine is that a second set of confined objects should also exist. These objects are forced into positions at right angles to Planet Nine and into orbits that are perpendicular to the plane of the solar system. Five known objects (blue) fit this prediction precisely.
Credit: Caltech/R. Hurt (IPAC) [Diagram was created using WorldWide Telescope.]
Astronomers, however, had other plans. In 2014, Chad Trujillo and Scott Shepard were studying the motions of large objects in the Kuiper Belt and realized that a large planet in the outer Solar System must be messing with orbits in the region.

This was confirmed and fine tuned by other astronomers, which drew the attention of Mike Brown and Konstantin Batygin. The name Mike Brown might be familiar to you. Perhaps the name, Mike “Pluto Killer” Brown? Mike and his team were the ones who originally discovered Eris, leading to the demotion of Pluto.

Brown and Batygin were looking to find flaws in the research of Trujillo and Shepard, and they painstakingly analyzed the movement of various Kuiper Belt Objects. They found that six different objects all seem to follow a very similar elliptical orbit that points back to the same region in space.

All these worlds are inclined at a plane of about 30-degrees from pretty much everything else in the Solar System. In the words of Mike Brown, the odds of these orbits all occurring like this are about 1 in 100.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

Instead of a random coincidence, Brown and Batygin think there’s a massive planet way out beyond the orbit of Pluto, about 200 times further than the distance from the Sun to the Earth. This planet would be Neptune-sized, roughly 10 times more massive than Earth.

But why haven’t they actually observed it yet? Based on their calculations, this planet should be bright enough to be visible in mid-range observatories, and definitely within the capabilities of the world’s largest telescopes, like Keck, Palomar, Gemini, and Hubble, of course.

The trick is to know precisely where to look. All of these telescopes can resolve incredibly faint objects, as long as they focus in one tiny spot. But which spot. The entire sky has a lot of tiny spots to look at.

Artist's impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign
Artist’s impression of Planet Nine, blocking out the Milky Way. The Sun is in the distance, with the orbit of Neptune shown as a ring. Credit: ESO/Tomruen/nagualdesign

Based on the calculations, it appears that Planet 9 is hiding in the plane of the Milky Way, camouflaged by the dense stars of the galaxy. But astronomers will be scanning the skies, and hope a survey will pick it up, anytime now.

But wait a second, does this mean that we’re all going to die? Because I read on the internet and saw some YouTube videos that this is the planet that’s going to crash into the Earth, or flip our poles, or something.

Nope, we’re safe. Like I just said, the best astronomers with the most powerful telescopes in the world and space haven’t been able to turn anything up. While the conspiracy theorists have been threatening up with certain death from Planet X for decades now – supposedly, it’ll arrive any day now.

But it won’t. Assuming it does exist, Planet 9 has been orbiting the Sun for billions of years, way way out beyond the orbit of Pluto. It’s not coming towards us, it’s not throwing objects at us, and it’s definitely not going to usher in the Age of Aquarius.

Once again, we get to watch science in the making. Astronomers are gathering evidence that Planet 9 exists based on its gravitational influence. And if we’re lucky, the actual planet will turn up in the next few years. Then we’ll have 9 planets in the Solar System again.

Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought

NASA is looking for a new Planetary Protection Officer to protect Earth and the other bodies of the Solar System from harmful contamination. Credit: NASA/JPL-Caltech/SETI Institute.

All the worlds may be ours except Europa but that only makes the ice-covered moon of Jupiter all the more intriguing. Beneath Europa’s thin crust of ice lies a tantalizing global ocean of liquid water somewhere in the neighborhood of 100 kilometers deep—which adds up to more liquid water than is on the entire surface of the Earth. Liquid water plus a heat source(s) to keep it liquid plus the organic compounds necessary for life and…well, you know where the thought process naturally goes from there.

And now it turns out Europa may have even more of a heat source than we thought. Yes, a big component of Europa’s water-liquefying warmth comes from tidal stresses enacted by the massive gravity of Jupiter as well as from the other large Galilean moons. But exactly how much heat is created within the moon’s icy crust as it flexes has so far only been loosely estimated. Now, researchers from Brown University in Providence, RI and Columbia University in New York City have modeled how friction creates heat within ice under stress, and the results were surprising.

Continue reading “Icy Hot: Europa’s Frozen Crust Could Be Warmer Than We Thought”