Hubble Sees a Bridge of Stars Connecting Two Galaxies

The galaxy NGC 5427 shines in this new NASA Hubble Space Telescope image. Image Credits: NASA, ESA, and R. Foley (University of California – Santa Cruz); Processing: Gladys Kober (NASA/Catholic University of America)

The poetic-minded among us like to point out how Nature is a dance. If they’re right, then galaxies sometimes form unwieldy pairs. With the Hubble Space Telescope, we can spot some of these galactic pairs as they approach one another.

Continue reading “Hubble Sees a Bridge of Stars Connecting Two Galaxies”

How Does the Cosmic Web Drive Galaxy Evolution?

A computer simulation of what gas and stars in a galaxy cluster look like, and how they look embedded in the cosmic web. The assembly of galaxy clusters has implications for the clumpiness of the Universe throughout time. Credit: Yannick Bahé.
A computer simulation of what gas and stars in a galaxy cluster look like, and how they look embedded in the cosmic web. The assembly of galaxy clusters has implications for the clumpiness of the Universe throughout time. Credit: Yannick Bahé.

Galaxies experience a long strange trip through the cosmic web as they grow and evolve. It turns out that the neighborhoods they spend time in on the journey change their evolution, and that affects their star formation activity and alters their gas content.

Continue reading “How Does the Cosmic Web Drive Galaxy Evolution?”

A Black Hole Has Cleared Out Its Neighbourhood

An artist's illustration of a supermassive black hole (SMBH.) The SMBH in a distant galaxy expelled all the material in its accretion disk, clearing out a vast area. Image Credit: ESA

We can’t see them directly, but we know they’re there. Supermassive black holes (SMBHs) likely dwell at the center of every large galaxy. Their overwhelming gravity draws material toward them, where it collects in an accretion disk, waiting its turn to cross the event horizon into oblivion.

But in one galaxy, the SMBH has choked on its meal and spit it out, sending material away at high speeds and clearing out the entire neighbourhood.

Continue reading “A Black Hole Has Cleared Out Its Neighbourhood”

The JWST Discovers a Galaxy That Shouldn’t Exist

The JWST captured this image of an unusual quiescent dwarf galaxy in the background of separate observations. Image Credit: Carleton et al. 2024

Astronomers working with the JWST found a dwarf galaxy they weren’t looking for. It’s about 98 million years away, has no neighbours, and was in the background of an image of other galaxies. This isolated galaxy shows a lack of star-formation activity, which is very unusual for an isolated dwarf.

Most isolated dwarf galaxies form stars, according to a wealth of observations. What’s different about this one?

Continue reading “The JWST Discovers a Galaxy That Shouldn’t Exist”

Even Early Galaxies Grew Hand-in-Hand With Their Supermassive Black Holes

An artist’s impression of a quasar. Credit: NASA / ESA / J. Olmsted, STScI

Within almost every galaxy there is a supermassive black hole. This by itself implies some kind of formative connection between the two. We have also observed how gas and dust within a galaxy can drive the growth of galactic black holes, and how the dynamics of black holes can both drive star formation or hinder it depending on how active a black hole is. But one area where astronomers still have little information is how galaxies and their black holes interacted in the early Universe. Did black holes drive the formation of galaxies, or did early galaxies fuel the growth of black holes? A recent study suggests the two evolved hand in hand.

Continue reading “Even Early Galaxies Grew Hand-in-Hand With Their Supermassive Black Holes”

The Aftermath of a Recent Galactic Merger

The Gemini South telescope view of NGC 4753, a peculiar galaxy thought to have experienced a galactic merger. Courtesy International Gemini Observatory/NOIRLab/NSF/AURA
The Gemini South telescope view of NGC 4753, a peculiar galaxy thought to have experienced a galactic merger. Courtesy International Gemini Observatory/NOIRLab/NSF/AURA

NGC 4753 is a prime example of what happens after a galactic merger. It looks like a twisted mess, with dust lanes looping around the massive galactic nucleus. Astronomers long wondered what happened to this galaxy, and with a sharp new image created by the Gemini South telescope, they can finally explain its tortured past.

Continue reading “The Aftermath of a Recent Galactic Merger”

Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb

These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces. Image Credit: NASA/ESA/CSA

If you’re fascinated by Nature, these images of spiral galaxies won’t help you escape your fascination.

These images show incredible detail in 19 spirals, imaged face-on by the JWST. The galactic arms with their multitudes of stars are lit up in infrared light, as are the dense galactic cores, where supermassive black holes reside.

Continue reading “Feast Your Eyes on 19 Face-On Spiral Galaxies Seen by Webb”

Early Galaxies Looked Nothing Like What We See Today

Though an estimated 100 million black holes roam among the stars in our Milky Way galaxy, astronomers have never identified an isolated black hole – until now. Following six years of meticulous observations, NASA’s Hubble Space Telescope has provided, for the first time ever, strong evidence for a lone black hole plying interstellar space. The black hole that was detected lies about 5,000 light-years away, in the Carina-Sagittarius spiral arm of our galaxy. However, its discovery allows astronomers to estimate, statistically, that the nearest isolated black hole to Earth might be as close as 80 light-years. Black holes are born from rare, monstrous stars (less than one-thousandth of the galaxy’s stellar population) that are at least 20 times more massive than our Sun. These stars explode as supernovae, and the remnant core is crushed by gravity into a black hole. Because the self-detonation is not perfectly symmetrical, the black hole may get a kick, and go careening through our galaxy like a blasted cannonball. Hubble can’t photograph the wayward black hole because it doesn’t emit any light, but instead swallows all radiation due to its intense gravitational pull. Instead, Hubble measurements capture the ghostly gravitational footprint of how the stealthy black hole warps space, which then deflects starlight from anything that momentarily lines up exactly behind it. Ground-based telescopes, which monitor the brightness of millions of stars in the rich star fields in the direction of the central bulge of our Milky Way, look for the tell-tale sudden brightening of one of them when a massive object passes between us and the star. Then Hubble follows up on the most interesting such events. Kailash Sahu of the Space Telescope Science Institute in Baltimore, Maryland, along with his team, made the discovery in a survey designed to find just such isolated black holes. The warping of space due to the gravity of a foreground object passing in front of a star located far behind it will momentarily bend and amplify the light of the background star as it passes in front of it. The phenomenon, called gravitational microlensing, is used to study stars and exoplanets in the approximately 20,000 events seen so far inside our galaxy. The signature of a foreground black hole stands out as unique among other microlensing events. The very intense gravity of the black hole will stretch out the duration of the lensing event for over 200 days. Also, If the intervening object was instead a foreground star, it would cause a transient color change in the starlight as measured because the light from the foreground and background stars would momentarily be blended together. But no color change was seen in the black hole event. Next, Hubble was used to measure the amount of deflection of the background star’s image by the black hole. Hubble is capable of the extraordinary precision needed for such measurements. The star’s image was offset from where it normally would be by two milliarcseconds. That’s equivalent to measuring the diameter of a 25-cent coin in Los Angeles as seen from New York City. This astrometric microlensing technique provided information on the mass, distance, and velocity of the black hole. The amount of deflection by the black hole’s intense warping of space allowed Sahu’s team to estimate it weighs seven solar masses. The isolated black hole is traveling across the galaxy at 90,000 miles per hour (fast enough to travel from Earth to the moon in less than three hours). That’s faster than most of the other neighboring stars in that region of our galaxy. “Astrometric microlensing in conceptually simple but observationally very tough,” said Sahu. “It is the only technique for identifying isolated black holes.” When the black hole passed in front of a background star located 28,000 light-years away in the galactic bulge, the starlight coming toward Earth was amplified for a duration of 265 days as the black hole passed by. However, it took several years of Hubble observations to follow how the background star’s position appeared to be deflected by the bending of light by the foreground black hole. The existence of stellar-mass black holes has been known since the early 1970’s, but all of them—until now—are found in binary star systems. Gas from the companion star falls into the black hole, and is heated to such high temperatures that it emits X rays. About two dozen black holes have had their masses measured in X-ray binaries through their gravitational effect on their companions. Black hole masses in X-ray binaries inside our galaxy range from 5 to 20 solar masses. Black holes detected in other galaxies by gravitational waves from mergers between black holes and companion objects have been as high as 90 solar masses. “Detections of isolated black holes will provide new insights into the population of these objects in our Milky Way,” said Sahu. He expects that his program will uncover more free-roaming black holes inside our galaxy. But it is a needle-in-a-haystack search. The prediction is that only one in 1500 microlensing events are caused by isolated black holes. NASA’s upcoming Nancy Grace Roman Space Telescope will discover several thousand microlensing events out of which many are expected to be black holes, and the deflections will be measured with very high accuracy. In a 1916 paper on general relativity, Albert Einstein predicted that his theory could be tested by observing the sun’s gravity offsetting the apparent position of a background star. This was tested by astronomer Arthur Eddington during a solar eclipse on May 29, 1919. Eddington measured a background star being offset by 2 arc seconds, validating Einstein’s theories. Both scientists could hardly have imagined that over a century later this same technique would be used – with unimaginable precision of a thousandfold better — to look for black holes across the galaxy.

Talk to anyone about galaxies and it often conjurs up images of spiral or elliptical galaxie. Thanks to a survey by the James Webb Space Telescope it seems the early Universe was full of galaxies of different shapes. In the first 6 billion years up to 80% of the galaxies were flat, surfboard like. But that’s not it, there were others like pool noodles too, yet why they looked so different back then is a mystery.

Continue reading “Early Galaxies Looked Nothing Like What We See Today”

This Strange-Looking Galaxy is Actually Two. And They're Merging

This NASA/ESA Hubble Space Telescope image features Arp 122, a peculiar galaxy that in fact comprises two galaxies – NGC 6040, the tilted, warped spiral galaxy and LEDA 59642, the round, face-on spiral – that are in the midst of a collision. ESA/Hubble & NASA, J. Dalcanton, Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Acknowledgement: L. Shatz

This strange-looking galaxy seems to be a spiral with a long tidal tail stretching away. It’s known as Arp 122, and it’s actually not just one galaxy, but two separate galaxies. NGC 6040 is the warped spiral galaxy seen edge-on, while LEDA 59642 is the round, face-on spiral. The two are colliding about 540 million light-years from Earth, and it gives us a preview of the Milky Way’s future collision with Andromeda.

This image was taken by the venerable Hubble Space Telescope

What will Arp 122 look like when the merger is complete? We’ll try to keep you posted, but this ongoing merger will take hundreds of millions of years, so be patient.

Continue reading “This Strange-Looking Galaxy is Actually Two. And They're Merging”

The JWST Solves the Mystery of Ancient Light

This image shows the galaxy EGSY8p7, a bright galaxy in the early Universe where light emission is seen from, among other things, excited hydrogen atoms — Lyman-alpha emission. The galaxy was identified in a field of young galaxies studied by Webb in the CEERS survey. In the bottom two panels, Webb’s high sensitivity picks out this distant galaxy along with its two companion galaxies, where previous observations saw only one larger galaxy in its place. This discovery of a cluster of interacting galaxies sheds light on the mystery of why the hydrogen emission from EGSY8p7, shrouded in neutral gas formed after the Big Bang, should be visible at all. Image Credit: ESA/Webb, NASA & CSA, S. Finkelstein (UT Austin), M. Bagley (UT Austin), R. Larson (UT Austin), A. Pagan (STScI), C. Witten, M. Zamani (ESA/Webb)

The very early Universe was a dark place. It was packed with light-blocking hydrogen and not much else. Only when the first stars switched on and began illuminating their surroundings with UV radiation did light begin its reign. That occurred during the Epoch of Reionization.

But before the Universe became well-lit, a specific and mysterious type of light pierced the darkness: Lyman-alpha emissions.

Continue reading “The JWST Solves the Mystery of Ancient Light”