What I Learned Writing ‘Night Sky with the Naked Eye’

Credit: Duluth News Tribune / King
The author enjoys a pretty display of the northern lights on October 23 under a starry sky. His new book, "Night Sky with the Naked Eye," explores all the amazing things you can see in the sky without special equipment including satellites, planets, meteor showers and of course, the aurora.
The author enjoys a pretty display of the northern lights on October 23, 2016 under a starry sky. His new book, “Night Sky with the Naked Eye,” explores all the amazing things you can see in the sky without special equipment including satellites, planets, meteor showers and of course, the aurora.

My book Night Sky with the Naked Eye publishes today. It would have never seen the light of day much less ever been conceived were it not for Fraser Cain, publisher of Universe Today, and Nancy Atkinson, an editor and writer for the same. Several years ago, Nancy invited me to write for UT. I hopped at the chance. Before her contact, I’d been writing a daily blog on astronomy called Astro Bob (and still do).

Fast forward to last summer when I got an email from Nancy saying Page Street Publishing had contacted her about writing a book about space missions. The publisher also wanted a book about night sky observing without fancy equipment for which she recommended me. Me? I felt like the luckiest guy on the planet!

Book writing proceeds in many stages. First, the table of contents had to be prepared and approved. Then followed a sample chapter. The publisher chose the one on artificial satellites, which I wrote in about a week. The tone was right, but he asked for changes in the organization, which I dutifully made. By November, a contract followed and the project was underway with a first draft due to my editor in about 10 weeks.

Cover of my book that publishes today. Credit: Bob King
Cover of my book that publishes today. Credit: Bob King

Writing is hard work. But it’s a special place all writers come back to again and again. We can’t help but keep trying to find just the right words to capture a concept or emotion. And when we do, a quiet pleasure flows down the spine like warmth creeping into cold fingers splayed in front of a fire. Not that these moments always come easily. Writer Colson Whitehead describes the experience of writing as “crawling through glass.” I would soon become well-acquainted with that feeling, too.

Nancy wrote her book Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos at nearly the same time. We were grateful for each other’s support, and it was a kick to follow her progress as well as bounce ideas around. With a tight deadline in front of me, I set to work immediately, taking more than two weeks of vacation from my regular job to make sure the draft was done on time. No way was I going to compromise an opportunity of a lifetime.

Maybe you’ve thought of writing a book, starting a blog or hope one day to write for Universe Today or another online astronomy site. There’s plenty of good advice for writers out there. I’ll share what worked for me.

#1: Put your butt in the chair and keep it in the chair. My wife reminded me of this often, adding that the book wasn’t going to write itself. Temptations are everywhere. Answering the phone, making another cup of tea, staring out the window and my favorite, shoveling the driveway. I had the cleanest driveway in the neighborhood. Even an inch of new snow was enough to grab the shovel and happily scrape down to the gravel. So yes, I did occasionally get out of the chair, but many times it did me good, freeing up the brain to see more clearly into a topic. Or dream up a fitting photo or illustration.

Creativity comes at odd little moments. It can flow while tapping away in front of a glowing screen or sneak into consciousness when you’re bending down to feed the dog. So a mix of activities seemed the best but with extra emphasis on staying put. I rarely hiked last winter and kept my walks in the neighborhood brief. Instead of observing at night, I wrote or gathered photos. By January, I joked to my friends that I’d voluntarily put myself under house arrest.

#2: Spill your guts, worry about the details later. It’s incredibly tempting when writing to continuously edit one’s work, going back over every sentence to make each “perfect”. This is a muse-killer. Though difficult to stick to, once you let your thoughts flow onto paper without worrying about spelling, clauses and the whole lot of burdensome rules, you’ll become a wild horse running free on the prairie. Let it out, let it out and worry about the commas later. I don’t play a musical instrument, but free-flow writing — just getting the ideas out — must feel something like riffing on a jazz melody.

#3: When stuck, move on to another topic, take a walk, listen to music. Struggling to describe an important concept or connecting your thoughts in a way that flows on the page can drive you nuts, even bring you to tears.  Sure, you can keep beating on the idea like a madman hammering on a bent nail, but why why torture yourself? A little distraction can be good. Move on to another part of the story or a different chapter or get up and take a short walk. Defocusing allows the ideas you’re having a tug-of-war with to come of their own accord.

To keep track of ideas, topics and the photos I'd need for the book, I kept a notebook. Credit: Bob King
To keep track of ideas, topics and the photos I’d need for the book, I kept a notebook filled to the gills with lists. Checkmarks indicate tasks accomplished. Credit: Bob King

As the February 1 deadline approached, time took on a physical dimension under the intense pressure to get everything done. I cut time into little blocks that when added up would get me to the finish line on the first draft. I made it just in time, shipped off my copy via e-mail, got in the car to go to work and turn up the music really LOUD. For a fews days I was on top of the world. Invincible.

My editor, Elizabeth, contacted me later with positive comments and then returned the manuscript with “developmental edits” or questions about descriptions and organization. We pitched the ever-refined draft back and forth over the next few months. Each time I read through the ten chapters and made both suggested changes and other refinements. I also added photos during this stage and worked via e-mail with the layout staff to place the best images and graphics at the best places in the text. I shot more images and requested photos from talented astrophotographers, prepared the acknowledgments and sought our recommendations from respected scientists and writers.

This diagram from the book uses the human face to illustrate how changing lighting angles causes the phases of the moon. Credit: Bob King
This diagram from the book uses the human face to illustrate how changing lighting angles causes the phases of the moon. Credit: Bob King

The editors at Page Street were quite generous with photo usage, a joy for me because that’s what I do for a living. I’ve been a photographer and photo editor at the Duluth News Tribune in Duluth, Minn. for many years. My favorite subjects are people, but I slip in an aurora or eclipse now and again. And that’s the irony. I never saw myself as a writer.

Like many, I started by keeping a journal of my observations through the telescope and reflections about the night sky. The Astro Bob blog took that a step further and writing for Universe Today and Sky & Telescope let me find my voice. So I maybe I have a voice, and I like to think I can be a helpful guide at your side, but writer? That still seems too lofty a term to describe what I do. But here we are.

After several edits including the final one, when I was sent a thick stack of low-res black and white pages of the book to mark up and return, I rested briefly before beginning the final phase: publicity. This is the weird part, where you tell everyone what a nice book you’ve written and how it would make a great Christmas gift for that budding astronomer in the family. When I held the first copy in my hands I couldn’t believe that all those hours of work at the computer became a physical object, a beautiful one even.

This map from the book shows Saturn's location around the time of opposition through 2021.
This map from the book shows Saturn’s location around the time of opposition through 2021. Credit: Bob King, Source: Stellarium

I’m biased of course, but I think both beginning and amateur astronomers will find the book useful. It includes lots of suggested activities – set off in separate boxes – to encourage you to get out under the stars. I make regular mention of the Web and phone apps as ways to become more familiar with the constellations, learn of newly-discovered bright comets and even find a dark sky.

Besides the easy naked eye topics like how to find the brightest constellations or see the best meteor showers of the year, the book offers visual challenges. Have you ever seen craters on the Moon without optical aid or the midnight glow of the gegenschein? You’ll find out how in my book. As a photographer, I’ve included tips on how to focus a digital camera and use it to photograph the aurora or a space station pass.

I’d be willing to bet that most books aren’t as complete as their authors would hope. I had to cut precious photos, graphics, 3 years of a sky calendar and other bits and pieces from mine. Ouch! To this day, I’m still thinking of ways to improve it with a fresh photo, new diagram or change of wording. Now it’s your turn to be the judge.

The zodiacal light punctuated by the planet Jupiter reflects off Lake Superior near Duluth, Minn. this morning (Nov. 8). The book describes nighttime lights such as the zodiacal, gegenschein, airglow and lunar halo and corona phenomena. Credit: Bob King
The zodiacal light punctuated by the planet Jupiter towers over northern Wisconsin along Lake Superior near Duluth, Minn. this morning (Nov. 8). The book describes nighttime lights such as the zodiacal, gegenschein, airglow in addition to lunar halo and corona phenomena. Credit: Bob King

Throughout, Nancy and I rooted for one another and shared our ups and downs. Incredible Stories was to publish within a week of Night Sky, but a type corruption error discovered in several chapters put the book on hold. Her new publication date is December 20, and I encourage you to pre-order a copy, so it arrives in time for Christmas. Order a copy of my book also, and I promise the two of us will keep you company on those long winter nights ahead.

Can I share one final tip? Once you’ve found your passion, say ‘yes’ to every opportunity that furthers it. You’ll be amazed at the places that one word will take you to.

***  To order a copy of Night Sky with the Naked Eye just click an icon to go to the site of your choice — Amazon, Barnes & Noble or Indiebound. It’s currently available at the first two outlets for a very nice discount. It should also be at your local B&N bookstore.  And don’t forget to vote today!

night-sky-book-cover-amazon-anno-150x150night-sky-book-cover-bn-150x150night-sky-book-cover-indie-150x150

A Challenge in Visual Athletics: Hunting the Gegenschein

The gegenschein visible as the bright 'knot' in the zodiacal glow high above the VLT. Image credit: ESO/Y. Beletsky

Looking for something truly elusive? Astronomy has no shortage of the fleeting and ephemeral when it comes to challenges. This week’s challenge will require supremely dark skies and persistence.

We’re talking about the gegenschein, the elusive counter glow lying opposite to the Sun across the plane of the ecliptic. Continue reading “A Challenge in Visual Athletics: Hunting the Gegenschein”

Comet Catalina Grows Two Tails, Soars at Dawn

Comet C/2013 US10 Catalina shows off a compact green coma and two tails in this photo taken this morning (Nov. 20, 2015) at dawn from Arizona. Credit: Chris Schur

Amateur astronomer Chris Schur of Arizona had only five minutes to observe and photograph Comet Catalina this morning before twilight got the better of the night. In that brief time, he secured two beautiful images and made a quick observation through his 80mm refractor. He writes:

“Very difficult observation on this one. (I observed) it visually with the 35mm Panoptic ocular. It was a round, slightly condensed object with no sign of the twin tails that show up in the images. After five minutes, we lost it visually as it was 2° degrees up in bright twilight. Images show it for a longer time and a beautiful emerald green head with two tails forming a Y shaped fan.” 

Comet Catalina was about 3 high over Lake Superior near Duluth, Minn. IU.S.) at 5:55 a.m. this morning. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds.
Comet Catalina stands some 3° high over Lake Superior near Duluth, Minn. (U.S.) at 5:55 a.m. this morning, Nov. 22. Stars are labeled with their magnitudes. Details: 200mm lens, f/2.8, ISO 1250, 3-seconds. Credit: Bob King

Schur estimated the comet’s brightness at around magnitude +6. What appears to be the dust tail extends to the lower right (southeast) with a narrower ion tail pointing north. With its twin tails, I’m reminded of a soaring eagle or perhaps a turkey vulture rocking back and forth on its wings. While they scavenge for food, Catalina soaks up sunlight.

I also headed out before dawn for a look. After a failed attempt to spot the new visitor on Saturday, I headed down to the Lake Superior shoreline at 5:30 a.m. today and waited until the comet rose above the murk. Using 7×50 binoculars in a similar narrow observing window, I could barely detect it as a small, fuzzy spot 2.5° south of 4th magnitude Lambda Virginis at 5:50 a.m. 10 minutes after the start of astronomical twilight. The camera did better!

Chris's first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur
Chris’s first photo was taken when the comet rose. This one was photographed minutes later with twilight coming on. Credit: Chris Schur

With the comet climbing about 1° per day, seeing conditions and viewing time will continue to improve. The key to seeing it is finding a location with an unobstructed view to the southeast — that’s why I chose the lake — and getting out while it’s still dark to allow time to identify the star field and be ready when the comet rises to greet your gaze.

Two views of Comet C/2013 US10 Catalina made around 6:23 a.m. EST (11:23 Universal Time) on Nov. 21st. The left photo is a 30-second exposure with dawn light approaching fast. Exposure at right was 10 seconds.
North is up and east to the left in these two photos of the comet made by Dr. D.T. Durig at 6:23 a.m. EST on Nov. 21st from Cordell-Lorenz Observatory in Sewanee, Tenn. He estimated the coma diameter at ~2 arc minutes with a tail at least 10 arc minutes long . “I get a nuclear magnitude of 10.3 and an total mag of around 7.8, but that is with only 5-10 reference stars,” wrote Durig. Credit: Dr. Douglas T. Durig

Alan Hale, discoverer of Comet Hale-Bopp, also tracked down Catalina this morning with an 8-inch (20-cm) reflector at 47x. He reported its magnitude at ~+6.1 with a 2-arc-minute, well-condensed coma and a faint wisp of tail to the southeast. In an e-mail this morning, Hale commented on the apparent odd angle of the dust tail:

“Since the comet is on the far side of the sun as seen from Earth, with the typical dust tail lagging behind, that would seem to create the somewhat strange direction. It  (the tail) almost seems to be directed toward the Sun, but it’s a perspective effect.”

Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight over the shoreline of northern Wisconsin. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Credit: Bob King
Venus glares inside the cone of the zodiacal light this morning at the start of astronomical twilight. Jupiter is seen at top and Mars two-thirds of the way from Jupiter to Venus. Arcturus shines at far left. Credit: Bob King

There were side benefits to getting up early today. Three bright planets lit up Leo’s tail and Virgo’s “Cup” and a magnificent display of zodiacal light rose from the lake to encompass not only the comet but all the planets as well.

VLTI Detects Exozodiacal Light Around Exoplanets

Artist's impression of zodiacal light viewed from the surface of an exoplanet. Credit: ESO/L. Calçada

If you’ve ever stood outside after twilight has passed, or a few hours before the sun rises at dawn,  then chances are you’ve witnessed the phenomenon known as zodiacal light. This effect, which looks like a faint, diffuse white glow in the night sky, is what happens when sunlight is reflected off of tiny particles and appears to extend up from the vicinity of the Sun. This reflected light is not just observed from Earth but can be observed from everywhere in the Solar System.

Using the full power of the Very Large Telescopic Interferometer (VLTI), an international team of astronomers recently discovered that the exozodiacal light – i.e., zodiacal light around other star systems – close to the habitable zones around nine nearby stars was far more extreme. The presence of such large amounts of dust in the inner regions around some stars may pose an obstacle to the direct imaging of Earth-like planets.

The reason for this is simple: even at low levels, exozodiacal dust causes light to become amplified intensely. For example, the light detected in this survey was roughly 1000 times brighter than the zodiacal light seen around the Sun. While this exozodiacal light had been previously detected, this is the first large systematic study of this phenomenon around nearby stars.

The team used the VLTI visitor instrument PIONIER which is able to interferometrically connect all four Auxiliary Telescopes or all four Unit Telescopes of the VLTI at the Paranal Observatory. This led to not only extremely high resolution of the targets but also allowed for a high observing efficiency.

The Very Large Telescoping Interferometer firing it's adaptive optics laser.  Credit: ESO/G. Hüdepohl
The Very Large Telescoping Interferometer firing its adaptive optics laser.
Credit: ESO/G. Hüdepohl

In total, the team observed exozodiacal light from hot dust close to the habitable zones of 92 nearby stars and combined the new data with their earlier observations.

In contrast to these earlier observations – which were made with the Center for High Angular Resolution Astronomy (CHARA) array at Georgia State University – the team did not observe dust that will later form into planets, but dust created in collisions between small planets of a few kilometers in size – objects called planetesimals that are similar to the asteroids and comets of the Solar System. Dust of this kind is also the origin of the zodiacal light in the Solar System.

As a by-product, these observations have also led to the discovery of new, unexpected stellar companions orbiting around some of the most massive stars in the sample. “These new companions suggest that we should revise our current understanding of how many of this type of star are actually double,” says Lindsay Marion, lead author of an additional paper dedicated to this complementary work using the same data.

“If we want to study the evolution of Earth-like planets close to the habitable zone, we need to observe the zodiacal dust in this region around other stars,” said Steve Ertel, lead author of the paper, from ESO and the University of Grenoble in France. “Detecting and characterizing this kind of dust around other stars is a way to study the architecture and evolution of planetary systems.”

A portrait of the HR8799 planetary system as imaged by the Hale Telescope. Credit: NASA/JPL-Caltech/Palomar Observatory.
A portrait of the HR8799 planetary system as imaged by the Hale Telescope.
Credit: NASA/JPL-Caltech/Palomar Observatory.

However, the good news is that the number of stars containing zodiacal light at the level of our Solar System is most likely much higher than the numbers found in the survey.

“The high detection rate found at this bright level suggests that there must be a significant number of systems containing fainter dust, undetectable in our survey, but still much brighter than the Solar System’s zodiacal dust,” explains Olivier Absil, co-author of the paper, from the University of Liège. “The presence of such dust in so many systems could therefore become an obstacle for future observations, which aim to make direct images of Earth-like exoplanets.”

Therefore, these observations are only a first step towards more detailed studies of exozodiacal light, and need not dampen our spirits about discovering more Earth-like exoplanets in the near future.

Further Reading: ESO

Mercury Pierces the Zodiacal Light at Dawn this Weekend

Credit: Stellarium

Psst! Ever spy the planet Mercury? The most bashful of all the naked eye planets makes its best dawn appearance of 2014 this weekend for northern hemisphere observers. And not only will Mercury be worth getting up for, but you’ll also stand a chance at nabbing that most elusive of astronomical phenomena — the zodiacal light — from a good dark sky sight.

DST note: This post was written whilst we we’re visiting Arizona, a land that, we’re happy to report, does not for the most part observe the archaic practice of Daylight Saving Time. Life goes on, zombies do not arise, and trains still run on time. In the surrounding world of North America, however, don’t forget to “fall back” one hour on Sunday morning, November 2nd. I know, I know. Trust me, we didn’t design the wacky system we’re stuck with today. All times noted below post-shift reflect this change, but it also means that you’ll have to awaken an hour earlier Sunday November 2nd onwards to begin your astronomical vigil for Mercury!

Oct21 to Nov14. Created using Starry Night Education Software.
The apparent daily path of Mercury as seen from 30 degrees north from October 21st to November 14th. Created using Starry Night Education Software.

Mercury starts the month of November reaching greatest elongation on Saturday, November 1st at 18.7 degrees west of the Sun at 13:00 Universal Time UT/09:00 EDT. Look for Mercury about 10 degrees above the eastern horizon 40 minutes before sunrise. The planet Jupiter and the stars Denebola and Regulus make good morning guideposts to trace the line of the ecliptic down to the horizon to find -0.3 magnitude Mercury.

Mars, Mercury and the International Space Station.
Mars, Mercury and the International Space Station caught during an evening apparition in 2013. (Photo by author)

Sweeping along the horizon with binoculars, you may just be able to spy +0.2 magnitude Arcturus at a similar elevation to the northwest. The +1st magnitude star Spica also sits to Mercury’s lower right. Mercury passes 4.2 degrees north of Spica on November 4th while both are still about 18 degrees from the Sun, making for a good study in contrast.

Later in the month, the old waning crescent Moon will present a challenge as it passes 2.1 degrees north of Mercury on November 21st, though both will only be 9 degrees from the Sun on this date.

Mercury also passes 1.6 degrees south of Saturn November 26th, but both are only 7 degrees from the Sun and unobservable at this point. But don’t despair, as you can always watch all of the planetary conjunction action via SOHO’s sunward staring LASCO C3 camera, which has a generous 15 degree field of view.

Credit: NASA/ESA/SOHO
Mercury (the bright ‘star’ with spikes) transits SOHO’s LASCO C3 camera. Credit: NASA/ESA/SOHO.

At the eyepiece, Mercury starts off the month of November as a 57% illuminated gibbous disk about 7” in diameter. This will change to a 92% illuminated disk 5″ across on November 15th, as the planet races towards superior conjunction on the far side of the Sun on December 8th. As with Venus, Mercury always emerges in the dawn sky as a crescent headed towards full phase, and the cycle reverses for both planets when they emerge in the dusk sky.

Why aren’t all appearances of Mercury the same? Mercury orbits the Sun once every 88 days, making greatest elongations of Mercury far from uncommon: on average, we get three dawn and three dusk apparitions of the innermost world per year, with a maximum of seven total possible. Two main factors come into play to assure that not all appearances of Mercury are created equal.

Credit: NASA
A depiction of the evening motion of Mercury and Venus as seen from Earth. Credit: NASA.

One is the angle of the ecliptic, which is the imaginary plane of our solar system that planets roughly follow traced out by the Earth’s orbit. In northern hemisphere Fall, this angle is at its closest to perpendicular at dawn, and the dusk angle is most favorable in the Spring. In the southern hemisphere, the situation is reversed. This serves to place Mercury as high as possible out of the atmospheric murk during favorable times, and shove it down into near invisibility during others.

The second factor is Mercury’s orbit. Mercury has the most elliptical orbit of any planet in our solar system at a value of 20.5% (0.205), with an aphelion of 69.8 million kilometres and perihelion 46 million kilometres from the Sun. This plays a more complicated role, as an elongation near perihelion only sees the planet venture 18.0 degrees from the Sun, while aphelion can see the planet range up to 27.8 degrees away. However, this distance variation also leads to noticeable changes in brightness that works to the advantage of Mercury spotters in the opposite direction. Mercury shines as bright as magnitude -0.3 at closer apparitions, to a full magnitude fainter at more distant ones at +0.7.

In the case of this weekend, greatest elongation for Mercury occurs just a week after perihelion, which transpired on October 25th.

earlier 2014 Curiousity
Mercury transits the Sun earlier this year as captured by the Curiosity rover on Mars. Credit: NASA/JPL.

Mercury is also worth keeping an eye on in coming years, as it will also transit the Sun for the first time since 2006 on May 9th, 2016. This will be visible for Europe and North America. We always thought it a bit strange that while rarer transits of Venus have yet to make their sci-fi theatrical debut, a transit of Mercury does crop up in the film Sunshine.

The first week of November is also a fine time to try and spy the zodiacal light. This is a cone-shaped glow following the plane of the ecliptic, resulting from sunlight backscattered across a dispersed layer of interplanetary dust. The zodiacal light was a common sight for us from the dark skies of Arizona, often rivaling the distant glow of Tucson over the mountains. The zodiacal light vanished from our view after moving to the humid and often light polluted U.S. East Coast, though we’re happy to report that we can once again spy it as we continue to traverse the U.S. southwest this Fall.

The zodiacal light captured by Cory Schmitz over the Drakensberg Mountains in South Africa.
The zodiacal light captured by Cory Schmitz over the Drakensberg Mountains in South Africa. (Used with permission). 

None other than rock legend Brian May of Queen fame wrote his PhD dissertation on the zodiacal light and the distribution and relative velocity of dust particles along the plane of the solar system. Having a dark site and a clear flat horizon is key to nabbing this bonus to your quest to cross Mercury off your life list this weekend!

LADEE Sees Zodiacal Light before Crashing into Moon, but Apollo Mystery Remains

The zodiacal light (left) reaches up from the eastern horizon to "touch" the Milky Way at right on Sept. 23, 2012. Credit: Bob King

Sunrise over the surface of the moon: a series of star tracker images taken by LADEE Saturday, April 12. The lunar horizon is ahead, a few minutes before orbital sunrise. Image Credit: NASA Ames.

[/caption]

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) literally ‘saw the light’ just days before crashing into the lunar farside last Thursday April 17. Skimming just a few kilometers above the moon’s surface, mission controllers took advantage of this unique low angle to gaze out over the moon’s horizon in complete darkness much like the Apollo astronauts did from lunar orbit more than 40 years ago.

The zodiacal light (left) reaches up from the eastern horizon to "touch" the Milky Way at right  on Sept. 23, 2012. Credit: Bob King
The zodiacal light (left), adorned by the planet Venus, reaches up from the eastern horizon to “touch” the Milky Way before sunrise on Sept. 23, 2012. Credit: Bob King

With the glow of Earth well-hidden, any dust in the moon’s scant atmosphere around the time of orbital sunrise should become visible. Scientists also expected to see  the softly luminous glow of the zodiacal light, an extensive cloud of comet and asteroid dust concentrated in the flat plane of the solar system. The zodiacal light gets its name from the zodiac, that familiar band of constellations the planets pass through as they orbit the sun. Back on Earth, the zodiacal light looks like a big thumb of light standing up from the western horizon a couple hours after sunset in spring and before sunrise in fall.

Frame from LADEE's star tracker camera showing the zodiacal light rising on the moon's horizon from its extremely low orbit on April 12, 2014. Credit: NASA
Frame from LADEE’s star tracker camera showing the zodiacal light rising on the moon’s horizon from its extremely low orbit on April 12, 2014. Credit: NASA

So what did LADEE see? As you watch the animation above, comprised of images taken from darkness until sunrise, you’ll see a yellow haze on the horizon that expands into large diffuse glow tilted slightly to the right. This is the zodiacal light along with a smaller measure of light coming from sun’s outer atmosphere or corona.  Together they’re referred to as CZL or ‘coronal and zodiacal light’. At the very end, the sun peaks over the lunar horizon.

This is a sketch of the lunar sunrise seen from orbit by Apollo 17 astronaut Eugene Cernan. On the right, the sketch is highlighted to show the sources of the scattered light: red indicates Coronal and Zodiacal Glow, blue is the Lunar Horizon Glow, perhaps caused by exospheric dust, and green indicates possible "streamers" of light (crepuscular rays) formed by shadowing and scattered light. Credit: NASA
This is a sketch of the lunar sunrise seen from orbit by Apollo 17 astronaut Eugene Cernan. On the right, the sketches are highlighted in color to show the sources of the scattered light: red indicates coronal and zodiacal light (CZL), blue is a glow along the lunar horizon possibly caused by dust suspended in the moon’s exosphere, and green may be crepuscular rays formed by shadowing and scattered light. Credit: NASA/phys.org

What appears to be missing from the pictures are the mysterious rays seen by some of the Apollo astronauts. The rays, neatly sketched by astronaut Eugene Cernan of Apollo 17, look a lot like those beams of light and shadow streaming though holes in clouds called crepuscular rays.

Crepuscular rays form a crown of rays made of alternating shadows and light scattered by dust in the atmosphere. Credit: Bob King
Crepuscular rays form a crown of rays made of alternating shadows and light scattered by dust and moisture in the atmosphere. Credit: Bob King

Only thing is, Earth’s atmosphere is thick enough for cloud beams. The dust in the moon’s atmosphere appears much too thin to cause the same phenomenon. And yet the astronauts saw rays as if sunlight streamed between mountain peaks and scattered off the dust just like home.

Low level horizon glow photos on the moon captured by the Surveyor 7 unmanned lander in 1968. It's possible this low altitude glow is caused by larger dust particles that don't travel as high as the smaller motes. Credit: NASA
Low level horizon glow photos on the moon captured by the Surveyor 7 unmanned lander in 1968. It’s possible this low altitude glow is caused by larger dust particles that don’t travel as high as the smaller motes. Credit: NASA

It’s believed that dust gets lofted into the spare lunar atmosphere via electricity. Ultraviolet light from the sun knocks electrons from atoms in moon dust, giving them a positive charge. Since like charges repel, bits of dust push away from one another and move in the direction of least resistance: up. The smaller the dust particle, the higher it rises until dropping back down to the surface. Perhaps these “fountains” of lunar dust illuminated by the sun are what the astronauts recorded.

Unlike Cernan, LADEE saw only the expected coronal and zodiacal light but no rays. Scientists plan to look more closely at several sequences of images made of lunar sunrise in hopes of finding them.

Happy Equinox! – A Perfect Time to See the Zodiacal Light

Zodiacal light tilts upward from the western horizon and points at the Pleiades star cluster in this photo taken March 19, 2009. Clouds at bottom reflect light pollution from nearby Duluth, Minn. U.S. Credit: Bob King

Welcome to the first day of spring! If you have a clear night between now and April 1, celebrate the new season with a pilgrimage to the countryside to ponder the eerie glow of the zodiacal light. Look for a large, diffuse, tapering cone of light poking up from the western horizon between 90 minutes and two hours after sunset. While the zodiacal light appears only as bright as the Milky Way,  you’re actually looking at the second brightest object in the night sky. No kidding.  If you could crunch it all into a little ball, it would shine at magnitude -8.5, far brighter than Venus and bested only by the full moon.  

The zodiacal (Zo-DIE-uh-cull) light is centered on the plane of the solar system called the ecliptic. On late March nights, you can trace it from near the western horizon more than 45 degrees (halfway up the sky). Stellarium
The zodiacal (Zo-DIE-uh-cull) light is centered on the plane of the solar system called the ecliptic. This is the same band of sky where you’ll find the planets and zodiac constellations, hence the name. On late March nights, you can trace it from near the western horizon more than 45 degrees (halfway up the sky). Created with Stellarium

Sunlight reflecting off countless dust particles shed by comets and spawned by asteroid collisions creates the luminous cone of light. First time observers might think they’re looking at skyglow from light pollution but the tapering shape and distinctive tilt mark this glow as interplanetary dust.

This image of coronal and zodiacal light (CZL) was taken by the Clementine spacecraft, when the sun was behind the moon. The white area on the edge of the moon is the CZL, and the bright is Venus. (Credit: NASA)
Photo of coronal and zodiacal light taken by the Clementine spacecraft when the sun was hidden by the moon. At right is Venus. Clementine measured the brightness of the light to arrive at an integrated magnitude of -8.5. It also estimated dust particle sizes and origin. Credit: NASA

Like the planets, the dust resides in the plane of the solar system. In spring, that plane (called the ecliptic) tilts steeply up from the western horizon after sunset, “lifting” the chubby thumb of light high enough to clear the horizon haze and stand out against a dark sky for northern hemisphere observers.  In October and November the ecliptic is once again tilted upright, but this time before dawn. While the zodiacal light is present year-round, it’s usually tipped at a shallow angle and camouflaged by horizon haze. No so for skywatchers in tropical and equatorial latitudes. There the ecliptic is tilted steeply all year long, and the light can be seen anytime there’s no moon in the sky.

The combined glow of dust particles in the plane of the solar system reaching from the sun's vicinity to beyond Mars is responsible for creating the zodiacal light. Planets are shown as colored disks. Illustration: Bob King
The combined glow of dust particles in the plane of the solar system reaching from the sun’s vicinity out to at least Jupiter is responsible for creating the zodiacal light. Dust closest to the sun glow more brightly, the reason the bottom of the zodiacal light cone is brighter than the tip. Planets are shown as colored disks. Illustration: Bob King

Now through April 1 and again from April 17-30 are the best nights for viewing because the moon will be absent from the sky. The cone is widest near the western horizon and narrows as you direct your gaze upward and to the left. At its apex, where it touches the V-shape Hyades star cluster, it continues into the even fainter zodiacal band and gegenschein, but more about that in a moment. Sweep your gaze in broad strokes back and forth across the western sky to help you discern the Z-light’s distinctive conical shape. And be sure to look for something HUGE. This thing is a monster – indeed, one of the largest entities in the solar system.

Scanning electron microscope photo of an interplanetary dust particle collected by a high-altitude plane. It measures about 8 microns across or a little less than twice the size of a human red blood cell. Scientists recently discovered that dust particles can act as tiny factories to built water molecules. Credit: Donald Brownlee and Elmar Jessberger
Scanning electron microscope photo of an interplanetary dust particle collected by a high-altitude plane. It measures about 8 microns across or a little less than twice the size of a human red blood cell. Scientists recently discovered that dust particles can act as tiny factories to built water molecules. Credit: Donald Brownlee and Elmar Jessberger

Observers fortunate enough to live under or with access truly dark skies can trace the zodiacal light all the way across the sky as the zodiacal band.

Midway along its length, 180 degrees opposite the sun, a slightly brighter circular patch called the gegenschein (German for ‘counter glow’) embedded in the band.

Dust particles there get an extra brightness boost because they face the sun square on, much like the moon does when full. While I usually see only a section of the zodiacal band from my dark observing site, the gegenschein is often visible as a diffuse, hazy patch of light about 6 degree across a little brighter than the sky background.

Incredible 360-degree-wide view of morning and evening zodiacal light cones (far left and right), the fainter zodiacal band and the brighter spot of gegenschein. Click to enlarge. Credit: Miloslav Druckmuller and Shadia Habbal
Incredible 360-degree-wide view of morning and evening zodiacal light cones (far left and right), the fainter zodiacal band and the brighter spot of gegenschein (center) and the Milky Way photographed from Mauna Kea. Click to enlarge. Credit: Miloslav Druckmuller and Shadia Habbal

Dutch astronomer H. C. van de Hulst determined that the dust particles responsible for the zodiacal light and its cousins the zodiacal band and gegenschein are about 0.04 inch (1 mm) in diameter and separated, on average, by about 5 miles (8 km).

The gegenschein, an oval shaped brighter spot within the faint zodiacal band, is easiest to when due south and highest in the sky at local midnight (1 a.m. Daylight Saving Time). Currently it's in northern Virgo. Since the 'counter glow' will always be opposite the sun, it will slide down closer to Spica in April. Created with Stellarium
The gegenschein, an oval shaped brighter spot within the faint zodiacal band, is easiest to when due south and highest in the sky at local midnight (1 a.m. Daylight Saving Time). Currently it’s in northern Virgo. Since the ‘counter glow’ will always be opposite the sun, it will slide down closer to Spica in April. Created with Stellarium

The particles form a low density, lens-shaped cloud of dust that’s thickest within the plane of the solar system but in reality covers the entire sky but ever so thinly. Sunlight absorbed by the particles is re-emitted as invisible infrared (heat) radiation. This re-radiation robs the dust of energy, causing the particles to spiral slowly into the sun. Fresh dust from the vaporization of cometary ices as well as collisions of asteroids replenishes the cloud.

Zodiacal light cones in the fall morning sky (left) and in late March. Both times of year, we see the plane of the solar system tipped at high angle in the sky. Credit: Bob King
Zodiacal light cones in the fall morning sky (left) and in late March. Both times of year we see the plane of the solar system tipped at a high angle in the sky. Credit: Bob King

According to a study by Joseph Hahn and colleagues of the Clementine Mission data, comet dust accounts for the majority of the zodiacal dust within 1 a.u. (93 million miles) of the sun; a mix of asteroidal and comet dust makes up the remainder.

Stepping out on a spring evening to look at the zodiacal light, we can appreciate how small things can come together to create something grand.

Dark Sky Regulations Bring Zodiacal Light to Rhode Island Observatory

Zodiacal light over Charleston, RI (Scott MacNeill, Frosty Drew Observatory)

The result of sunlight reflected off fine particles of dust aligned along the plane of the Solar System, zodiacal light appears as a diffuse, hazy band of light stretching upwards from the horizon after sunset or before sunrise. Most people have never seen zodiacal light because it’s very dim, and thus an extremely dark sky is required. But thanks to recent dark sky regulations that were passed in the coastal Rhode Island town of Charlestown, this elusive astronomical phenomenon has become visible — to the particular delight of one local observatory.


Frosty Drew Observatory is a small, privately-run observatory featuring a Meade Schmidt Cassegrain LX200 16″ telescope mounted on an alt-azimuth pier inside a dome that stands among the sports fields, parking areas, and nature trails of Ninigret Park and Wildlife Refuge in southern Rhode Island. Being a good distance from urban centers and developed areas, the skies there are some of the darkest in the state. But situated along the eastern seaboard of the United States, even Charlestown’s coast lies beneath a perpetual haze of light pollution.

A new town ordinance, passed in 2012, helped to darken the skies a notch. And while watching comet ISON one evening, astronomer Scott MacNeill became aware of the results.

The following is an excerpt from a Jan. 7 article by Cynthia Drummond of The Westerly Sun, reprinted with permission:

Scott MacNeill was in Ninigret Park, his telescope trained on the comet “Ison,” when he saw something he had never seen before: a celestial phenomenon called “zodiacal light.” After several decades of being obscured by light pollution, the feature was visible again, thanks to the town’s “dark sky” ordinance.

At first, MacNeill, an astronomer and the assistant director of the Frosty Drew observatory, didn’t believe what he was seeing. The cone of light, which he initially thought was light pollution, turned out to be a faint, white glow that astronomers at the observatory hadn’t glimpsed in recent memory.

A line of visitors is cast in silhouette against the evening sky as they wait to go into the Frosty Drew Observatory. (Susannah Snowden / The Westerly Sun)
A line of visitors is cast in silhouette against the evening sky as they wait to go into the Frosty Drew Observatory. (Susannah Snowden / The Westerly Sun)

“To see it in New England, period, is amazing, Zodiacal light is a common marker for the quality of a dark sky location.”

– Scott MacNeill, Astronomer, Frosty Drew Observatory

“I was sitting back for a minute, just looking at the sky, and I said ‘wait a minute. This is the southeast, and to the southeast is the ocean. What is coming up in the southeast?’ And then I noticed the cone. And I’m like ‘no way. That can’t be zodiacal light.’ I’ve heard so many stories about the days of old at Frosty Drew when you used to see zodiacal light here,” he said.

MacNeill credits Charlestown’s dark sky ordinance with reducing light pollution to the point where zodiacal light can be seen again. The ordinance, adopted in October 2012, regulates commercial outdoor lighting in order to improve the town’s dark sky for star-gazers, and to protect residents, wildlife and light-sensitive plants from the effects of light pollution.

One of the provisions of the ordinance requires that new lighting fixtures be designed to focus downward so light does not radiate up into the sky. Lighting installed before the ordinance was passed is exempt from the new regulations.

Building and Zoning Official Joe Warner explained that after the ordinance passed, two major sources of light pollution near the observatory were modified so they would be less polluting.

“At Ninigret Wildlife Refuge, some of the pole lights were changed to dark sky compliant lighting. The Charlestown Ambulance barn also replaced their lights with dark sky compliant lights,” he said.

Charlestown has been recognized as one of the only dark spots on the New England coast — a rare treat for people who enjoy looking at the night sky.

(Read the full article on The Westerly Sun’s website here.)

_________________

It’s fantastic to see results like this both occurring and being publicized, as dark skies have become quite rare in many populated areas of the world. People who live in or near major metropolitan areas — even in the surrounding sprawling suburbs — often never truly get a dark sky, not such that the dimmer stars, the Milky Way, meteor showers — and yes, the zodiacal light — can be readily seen on an otherwise clear night. The view of a star-filled night sky that has been a part of the human existence for millennia has steadily been doused by the murky glow of artificial lighting. Luckily groups like the International Dark Sky Association are actively trying to change that, but change isn’t always welcome — or quick.

At least, in one Rhode Island town anyway, a small victory has been won for the night.

(HT to Brown University’s Ladd Observatory in Providence for the heads-up on this story.)

Astrophoto: Zodiacal Light at Dawn

The morning zodiacal as seen from near Rodeo, New Mexico, looking east at 5:00 am December 6, 2013. Credit and copyright: Alan Dyer/Amazing Sky Photography.

Sometimes, if you are lucky, dawn comes before the dawn. The zodiacal light – or false dawn, as it is sometimes called – is an ethereal light extending up from the horizon, sometimes seen about an hour before sunrise or an hour after sunset. At one time, it was thought this was an atmospheric phenomenon, but it’s more cosmic than that! Zodiacal light is sunlight reflecting off dust grains in space. These dust grains are likely left over from the same process that created Earth and the other planets of our solar system 4.5 billion years ago.

Alan Dyer captured this beautiful view of the zodiacal light on a recent trip to New Mexico. If you look closely you can see some other cosmic phenomena as well: “Mars is above centre and Saturn is just rising over the mountain ridge,” Alan wrote on Flickr. “Comet Lovejoy C/2013 R1 is at far left. The image includes the position (left of centre, above the mountains left of the Zodiacal Light) where Comet ISON (C/2012 S2) would have been had it survived passage around the Sun.”

See more of Alan’s great work at his Flickr page or his website, Amazing Sky Photography.

Want to get your astrophoto featured on Universe Today? Join our Flickr group or send us your images by email (this means you’re giving us permission to post them). Please explain what’s in the picture, when you took it, the equipment you used, etc.

The September Equinox: ‘Tis the Season to Spy the Zodiacal Light

The zodiacal light in the Nevada dawn. The plane of the ecliptic can be traced by Jupiter in Gemini & Mars in the Beehive cluster just below center. (Credit: Cory Schmitz, used with permission).

This week leading up to the September equinox offers you a fine chance to catch an elusive phenomenon in the pre-dawn sky.

We’re talking about the zodiacal light, the ghostly pyramid-shaped luminescence that heralds the approach of dawn. Zodiacal light can also be seen in the post-dusk sky, extending from the western horizon along the ecliptic.

September is a great time for northern hemisphere observers to try and sight this glow in the early dawn. This is because the ecliptic is currently at a high and favorable angle, pitching the zodiacal band out of the atmospheric murk low to the horizon. For southern hemisphere observers, September provides the best time to hunt for the zodiacal light after dusk. In March, the situation is reversed, with dusk being the best for northern hemisphere observers and dawn providing the best opportunity to catch this elusive phenomenon for southern observers.

The clash of the zodiacal light and the plane of our galaxy. (Credit: Cory Schmitz, used with permission).
The clash of the zodiacal light and the plane of our galaxy. (Credit: Cory Schmitz, used with permission).

Cory Schmitz’s recent outstanding photos taken from the Nevada desert brought to mind just how ephemeral a glimpse of the zodiacal light can be. The glow was a frequent sight for us from dark sky sites just outside of Tucson, Arizona—but a rarity now that we reside on the light-polluted east coast of the U.S.

In order to see the zodiacal light, you’ll need to start watching before astronomical twilight—the start of which is defined as when the rising Sun reaches 18 degrees below the local horizon—and observe from as dark a site as possible under a moonless sky.

The Bortle dark sky scale lists the zodiacal light as glimpse-able under Class 4 suburban-to-rural transition skies. Under a Class 3 rural sky, the zodiacal light may extend up to 60 degrees above the horizon, and under truly dark—and these days, almost mythical—Class 1 and 2 skies, the true nature of the zodiacal band extending across the ecliptic can become apparent.  The appearance and extent of the zodiacal light makes a great gauge of the sky conditions at that favorite secret dark sky site.

The source of the zodiacal light is tiny dust particles about 10 to 300 micrometres in size scattered across the plane of the solar system. The source of the material has long been debated, with the usual suspects cited as micrometeoroid collisions and cometary dust. A 2010 paper by Peter Jenniskens and David Nesvorny in the Astrophysical Journal cites the fragmentation of Jupiter-class comets. Their model satisfactorily explains the source of about 85% of the material. Dust in the zodiacal cloud must be periodically replenished, as the material is slowly spiraling inward via what is known as the Poynting-Robertson effect. None other than Brian May of the rock group Queen wrote his PhD thesis on Radial Velocities in the Zodiacal Dust Cloud.

But even if you can’t see the zodiacal light, you still just might be able to catch it. Photographing the zodiacal light is similar to catching the band of the Milky Way. In fact, you can see the two crossing paths in Cory’s images, as the bright winter lanes of the Orion Spur are visible piercing the constellation of the same name. Cory used a 14mm lens at f/3.2 for the darker image with a 20 second exposure at ISO 6400 and a 24mm lens at f/2.8 with a 15 second exposure at ISO 3200 for the brighter shot.

The orientation of the ecliptic & the zodiacal band as seen from latitude 30 deg north in September, about 1 hour before sunrise. (Created by the author in Stellarium).
The orientation of the ecliptic & the zodiacal band as seen from latitude 30 deg north in September, about 1 hour before sunrise. (Created by the author in Stellarium).

Under a truly dark site, the zodiacal light can compete with the Milky Way in brightness. The early Arab astronomers referred to it as the false dawn. In recent times, we’ve heard tales of urbanites mistaking the Milky Way for the glow of a fire on the horizon during blackouts, and we wouldn’t be surprised if the zodiacal light could evoke the same. We’ve often heard our friends who’ve deployed to Afghanistan remark how truly dark the skies are there, as military bases must often operate with night vision goggles in total darkness to avoid drawing sniper fire.

Another even tougher but related phenomenon to spot is known as the gegenschein. This counter glow sits at the anti-sunward point where said particles are approaching 100% illumination. This time of year, this point lies off in the constellation Pisces, well away from the star-cluttered galactic plane. OK, we’ve never seen it, either. A quick search of the web reveals more blurry pics of guys in ape suits purporting to be Bigfoot than good pictures of the gegenschein. Spotting this elusive glow is the hallmark of truly dark skies. The anti-sunward point and the gegenschein rides highest near local midnight.

And speaking of which, the September equinox occurs this weekend on the 22nd at 4:44 PM EDT/20:44 Universal Time. This marks the beginning of Fall for the northern hemisphere and the start of summer for the southern.

The Full Harvest Moon also occurs later this week, being the closest Full Moon to the equinox occurring on September 19th at 7:13AM EDT/11:13 UT. Said Moon will rise only ~30 minutes apart on successive evenings for mid-northern latitude observers, owing to the shallow angle of the ecliptic. Unfortunately, the Moon will then move into the morning sky, drowning out those attempts to spy the zodiacal light until late September.

Be sure to get out there on these coming mornings and check out the zodiacal light, and send in those pics in to Universe Today!