NASA has Figured Out How to Extend the Lives of the Voyagers Even Longer

This artist's concept depicts one of NASA's Voyager spacecraft, including the location of the cosmic ray subsystem (CRS) instrument. Both Voyagers launched with operating CRS instruments. Credit: NASA/JPL-Caltech

Voyagers 1 and 2 have the distinction of being in space for 42 years and still operating. And even though they’re 18 billion km (11 billion miles) from the Sun, they’re still valuable scientifically. But they’re running out of energy, and if NASA wants them to continue on much longer, they have some decisions to make.

Continue reading “NASA has Figured Out How to Extend the Lives of the Voyagers Even Longer”

How Do We Terraform Jupiter’s Moons?

Surface features of the four members at different levels of zoom in each row

Continuing with our “Definitive Guide to Terraforming“, Universe Today is happy to present to our guide to terraforming Jupiter’s Moons. Much like terraforming the inner Solar System, it might be feasible someday. But should we?

Fans of Arthur C. Clarke may recall how in his novel, 2010: Odyssey Two (or the movie adaptation called 2010: The Year We Make Contact), an alien species turned Jupiter into a new star. In so doing, Jupiter’s moon Europa was permanently terraformed, as its icy surface melted, an atmosphere formed, and all the life living in the moon’s oceans began to emerge and thrive on the surface.

As we explained in a previous video (“Could Jupiter Become a Star“) turning Jupiter into a star is not exactly doable (not yet, anyway). However, there are several proposals on how we could go about transforming some of Jupiter’s moons in order to make them habitable by human beings. In short, it is possible that humans could terraform one of more of the Jovians to make it suitable for full-scale human settlement someday.

Continue reading “How Do We Terraform Jupiter’s Moons?”

Saturn’s Moon Tethys

Saturn's moon Tethys, imaged by Cassini on April 14, 2012.

Thanks the Voyager missions and the more recent flybys conducted by the Cassini space probe, Saturn’s system of moons have become a major source of interest for scientists and astronomers. From water ice and interior oceans, to some interesting surface features caused by impact craters and geological forces, Saturn’s moons have proven to be a treasure trove of discoveries.

This is particularly true of Saturn’s moon Tethys, also known as a “Death Star Moon” (because of the massive crater that marks its surface). In addition to closely resembling the space station out of Star Wars lore, it boasts the largest valleys in the Solar System and is composed mainly of water ice. In addition, it has much in common with two of its Cronian peers, Mimas and Rhea, which also resemble a certain moon-size space station.

Discovery and Naming:
Originally discovered by Giovanni Cassini in 1684, Tethys is one of four moons discovered by the great Italian mathematician, astronomer, astrologer and engineer between the years of 1671 and 1684. These include Rhea and Iapetus, which he discovered in 1671-72; and Dione, which he discovered alongside Tethys.

Cassini observed all of these moons using a large aerial telescope he set up on the grounds of the Paris Observatory. At the time of their discovery, he named the four new moons “Sider Lodoicea” (“the stars of Louis”) in honor of his patron, king Louis XIV of France.

An engraving of the Paris Observatory during Cassini's time. Credit: Public Domain
An engraving of the Paris Observatory during Cassini’s time. Credit: Public Domain

The modern names of all seven satellites of Saturn come from John Herschel (son of William Herschel, discoverer of Mimas and Enceladus). In his 1847 treatise Results of Astronomical Observations made at the Cape of Good Hope, he suggested that all should be named after the Titans – the brothers and sisters of Cronos – from Greek mythology.

Size, Mass and Orbit:
With a mean radius of 531.1 ± 0.6 km and a mass of 6.1745 ×1020 kg, Tethys is equivalent in size to 0.083 Earths and 0.000103 times as massive. Its size and mass also mean that it is the 16th-largest moon in the Solar System, and more massive than all known moons smaller than itself combined. At an average distance (semi-major axis) of 294,619 km, Tethys is the third furthest large moon from Saturn and the 13th most distant moon over all.

Tethys’ has virtually no orbital eccentricity, but it does have an orbital inclination of about 1°. This means that the moon is locked in an inclination resonance with Saturn’s moon Mimas, though this does not cause any noticeable orbital eccentricity or tidal heating. Tethys has two co-orbital moons, Telesto and Calypso, which orbit near Tethys’s Lagrange Points.

Diameter comparison of the Saturnian moon Tethys, Moon, and Earth. Credit: NASA/JPL/USGS/Tom Reding
Diameter comparison of the Saturnian moon Tethys, Moon, and Earth. Credit: NASA/JPL/USGS/Tom Reding

Tethys’ orbit lies deep inside the magnetosphere of Saturn, which means that the plasma co-rotating with the planet strikes the trailing hemisphere of the moon. Tethys is also subject to constant bombardment by the energetic particles (electrons and ions) present in the magnetosphere.

Composition and Surface Features:
Tethys has a mean density of 0.984 ± 0.003 grams per cubic centimeter. Since water is 1 g/cm3, this means that Tethys is comprised almost entirely of water ice. In essence, if the moon were brought closer to the Sun, the vast majority of the moon would sublimate and evaporate away.

It is not currently known whether Tethys is differentiated into a rocky core and ice mantle. However, given the fact that rock accounts for less 6% of its mass, a differentiated Tethys would have a core that did not exceed 145 km in radius. On the other hand, Tethys’ shape – which resembles that of a triaxial ellipsoid – is consistent with it having a homogeneous interior (i.e. a mix of ice and rock).

This ice is also very reflective, which makes Tethys the second-brightest of the moons of Saturn, after Enceladus. There are two different regions of terrain on Tethys. One portion is ancient, with densely packed craters, while the other parts are darker and have less cratering. The surface is also marked by numerous large faults or graben.

The Odysseus Crater, a Credit: NASA/JPL/SSI
The Odysseus Crater, the 400 km surface feature that gives Tethys it’s “Death Star” appearance. Credit: NASA/JPL/SSI

The western hemisphere of Tethys is dominated by a huge, shallow crater called Odysseus. At 400 km across, it is the largest crater on the surface, and roughly 2/5th the size of Tethys itself. Due to its position, shape, and the fact that a section in the middle is raised, this crater is also responsible for lending the moon it’s “Death Star” appearance.

The largest graben, Ithaca Chasma, is about 100 km wide and more than 2000 km long, making it the second longest valley in the Solar System. Named after the island of Ithaca in Greece, this valley runs approximately three-quarters of the way around Tethys’ circumference. It is also approximately concentric with Odysseus crater, which has led some astronomers to theorize that the two features might be related.

Scientists also think that Tethys was once internally active and that cryovolcanism led to endogenous resurfacing and surface renewal. This is due to the fact that a small part of the surface is covered by smooth plains, which are devoid of the craters and graben that cover much of the planet. The most likely explanation is that subsurface volcanoes deposited fresh material on the surface and smoothed out its features.

Cassini closeup of the southern end of Ithaca Chasma. Credit: NASA/JPL/Space Science Institute.
Cassini closeup of the southern end of Ithaca Chasma. Credit: NASA/JPL/Space Science Institute.

Like all other regular moons of Saturn, Tethys is believed to have formed from the Saturnian sub-nebula – a disk of gas and dust that surrounded Saturn soon after its formation. As this dust and gas coalesced, it formed Tethys and its two co-orbital moons: Telesto and Calypso. Hence why these two moons were  captured into Tethys’ Lagrangian points, with one orbiting ahead of Tethys and the other following behind.

Tethys has been approached by several space probes in the past, including Pioneer 11 (1979), Voyager 1 (1980) and Voyager 2 (1981). Although both Voyager spacecraft took images of the surface, only those taken by Voyager 2 were of high enough resolution to truly map the surface. While Voyager 1 managed to capture an image of Ithaca Chasma, it was the Voyager 2 mission that revealed much about the surface and imaged the Odysseus crater.

Tethys has also been photographed multiple times by the Cassini orbiter since 2004. By 2014, all of the images taken by Cassini allowed for a series of enhanced-color maps that detailed the surface of the entire planet (shown below). The color and brightness of Tethys’ surface have since become sources of interest to astronomers.

On the leading hemisphere of the moon, spacecraft have found a dark bluish band spanning 20° to the south and north from the equator. The band has an elliptical shape getting narrower as it approaches the trailing hemisphere, which is similar to the one found on Mimas.

This set of global, color mosaics of Saturn's moon Tethys was produced from images taken by NASA's Cassini spacecraft during its first ten years exploring the Saturn system. Credit: NASA / JPL-Caltech / Space Science Institute / Lunar and Planetary Institute
Global, color mosaics of Saturn’s moon Tethys, as produced from images taken by NASA’s Cassini spacecraft between 2004-2014. Credit: NASA/JPL-Caltech/Space Science Institute/ Lunar and Planetary Institute

The band is likely caused by the influence of energetic electrons from Saturn’s magnetosphere, which drift in the direction opposite to the rotation of the planet and impact areas on the leading hemisphere close to the equator. Temperature maps of Tethys obtained by Cassini have shown this bluish region to be cooler at midday than surrounding areas.

At present, Tethys’ water-rich composition remains unexplained. One of the most interesting explanations proposed is that the rings and inner moons accreted from the ice-rich crust of a much larger, Titan-sized moon before it was swallowed up by Saturn. This, and other mysteries, will likely be addressed by future space probe missions.

We have many great articles about Tethys here at Universe Today. Here’s one about the story about Tethys, with a photograph taken by NASA’s Cassini spacecraft, and another about a feature on the surface of Tethys called Ithaca Chasma.

Want more info on Tethys? Check out this article from Solar Views, and this one from Nine Planets.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

What are the Galilean Moons?

Illustration of Jupiter and the Galilean satellites. Credit: NASA

It’s no accident that Jupiter shares its name with the king of the gods. In addition to being the largest planet in our Solar System – with two and a half times the mass of all the other planets combined – it is also home to some of the largest moons of any Solar planet. Jupiter’s largest moons are known as the Galileans, all of which were discovered by Galileo Galilei and named in his honor.

They include Io, Europa, Ganymede, and Callisto, and are the Solar System’s fourth, sixth, first and third largest satellites, respectively. Together, they contain almost 99.999% of the total mass in orbit around Jupiter, and range from being 400,000 and 2,000,000 km from the planet. Outside of the Sun and eight planets, they are also among the most massive objects in the Solar System, with radii larger than any of the dwarf planets.

Continue reading “What are the Galilean Moons?”

Voyagers Find Giant Jacuzzi-like Bubbles at Edge of Solar System

Artist's interpretation depicting the new view of the heliosphere. The heliosheath is filled with “magnetic bubbles” (shown in the red pattern) that fill out the region ahead of the heliopause. In this new view, the heliopause is not a continuous shield that separates the solar domain from the interstellar medium, but a porous membrane with fingers and indentations. Credit: NASA/Goddard Space Flight Center/CI Lab


The barrier at the edge of our Solar System may not be the smooth shield that scientists once thought. The venerable Voyager spacecraft have detected a huge, turbulent sea of magnetic bubbles in the heliosheath — the interface between the heliosphere and interstellar space — similar to an actively bubbling Jacuzzi tub. At a briefing today, scientists said the finding is significant as “we now will have to change our view of how the Sun interacts with the Solar System,” said Arik Posner, Voyager program scientist at NASA Headquarters. But it also means that the “force field” that surrounds the entire Solar System may be letting in more harmful cosmic rays and energetic particles than previously thought.

Over 30 years into their mission, the Voyagers are still monitoring their environment and sending back data. In 2007, scientists noticed that Voyager 1 recorded dramatic dips and rises in the amount of electrons it encountered as it traveled through the heliosphere, the barrier that surrounds the entire Solar System and is created by the Sun’s magnetic field. Voyager 2 made similar observations of these charged particles in 2008.

Computer simulation of the magnetic reconnection in the heliosheath, which look like bubbles, or sausages. Credit: NASA/J.F. Drake, M. Swisdak, M. Opher

Using a new computer model to analyze the data, scientists found the Sun’s distant magnetic field is likely made up of bubbles approximately 100 million miles (160 million kilometers) wide — “like long sausages,” said Merav Opher at the briefing, an astronomer at Boston University who is the lead author of a paper published in the Astrophysical Journal.

And the bubbles are moving around, with oscillations of plus or minus 10 to 20 km. “It is very bubbly as far as we can tell,” Jim Drake from the University of Maryland said at the press conference. “The entire thing is bubbly, like where the jets come out from a Jacuzzi.”

Opher said the bubbles, while not visible from Earth, cover a large portion of the sky at about 38 degrees latitude and as the solar winds “bumps” up against the heliopause, the bubbles fill up the entire region next to the heliopause.

Like Earth, our Sun has a magnetic field with a north pole and a south pole. The field lines are stretched outward, and as the sun rotates, the solar wind twists them into a spiral as they are carried outward.
The bubbles are created when magnetic field lines reorganize. The new model suggests the field lines are broken up into self-contained structures disconnected from the solar magnetic field.

These magnetic bubbles should act as electron traps, so the spacecraft would experience higher than normal electron bombardment as they traveled through the bubbles.

But the implications of this new finding, said Opher, is also that the heliosheath is very different from what scientists expected. She prefaced by saying that any earlier ideas about the region was only conjecture since no spacecraft has been there before. “We thought heliopause would be a smooth surface and shield us from intergalactic cosmic rays,” she said. “It is not a shield but more like a membrane that is a sea of bubbles.”

One argument would say the bubbles would seem to be a very porous shield, allowing lots of cosmic rays through the gaps. But another view would be that cosmic rays could get trapped inside the bubbles, making the bubbling froth a very good shield indeed.

However, the scientists are still working on figuring out exactly what these bubbles are. The Voyagers’ instruments, while still working fine, are being tested in this new region of space. “The magnetic instruments on Voyager were designed to measure magnetic fields, but they are right at very edge of what the instruments are capable of sensing,” said Drake. “The magnetic field is very weak. While trying to find out what these magnetic bubbles are, we haven’t reached that moment where we say, ‘yes, that is it.’ We’d like to be able to pin it down much better.”

This video from NASA’s Goddard Spaceflight Center helps to visually explain the new findings:

Sources: NASA press conference, NASA’s Sun/Earth briefing materials, press release, more videos and visuals can be found at this Goddard webpage

You can follow Universe Today senior editor Nancy Atkinson on Twitter: @Nancy_A. Follow Universe Today for the latest space and astronomy news on Twitter @universetoday and on Facebook.