Telescope Pierces into One of the Biggest Nebulae in the Milky Way to Reveal its Newly Forming (and Nearly Dying) Stars

Image of the Carina nebula taken by VISTA, which reveals the dynamic cloud of interstellar matter and thinly spread gas and dust as never before. Credit: ESO/J. Emerson/M. Irwin/J. Lewis

Located about 7500 light-years from Earth, in the constellation of Carina, lies a star-forming region known as the Carina Nebula. This dynamic, evolving cloud of interstellar gas and dust measures about 300 light-years in diameter and is one of the Milky Way’s largest star-forming regions. It is also an exercise in contrasts, consisting of bright regions of gas illuminated by intense stellar radiation and dark pillars of dust that obscure star formation.
Continue reading “Telescope Pierces into One of the Biggest Nebulae in the Milky Way to Reveal its Newly Forming (and Nearly Dying) Stars”

So. Many. Stars…

Infrared image of globular cluster 47 Tucanae (NGC 104) captured by ESO’s VISTA telescope.

“My god, it’s full of stars!” said Dave Bowman in the movie 2010 as he entered the monolith, and one could imagine that the breathtaking view before him looked something like this.

Except this isn’t science fiction, it’s reality — this is an image of globular cluster 47 Tucanae taken by the European Southern Observatory’s VISTA telescope at the Paranal Observatory in Chile. It reveals in stunning detail a brilliant collection of literally millions of stars, orbiting our Milky Way galaxy at a distance of 15,000 light-years.

The full image can be seen below.

eso1302a (1)

47 Tucanae (also known as NGC 104) is located in the southern constellation Tucana. It’s bright enough to be seen without a telescope and, even though it’s very far away for a naked-eye object, covers an area about the size of the full Moon.

In reality the cluster is 124 light-years across.

Although globular clusters like 47 Tucanae are chock-full of stars — many of them very old, even as stars go — they are noticeably lacking in clouds of gas and dust. It’s thought that all the gaseous material has long since condensed to form stars, or else has been blown away by radiation and outbursts from the cluster’s exotic inhabitants.

At the heart of 47 Tucanae lie many curious objects like powerful x-ray sources, rapidly-spinning pulsars, “vampire” stars that feed on their neighbors, and strange blue stragglers — old stars that somehow manage to stay looking young. (You could say that a globular cluster is the cosmic version of a trashy reality show set in Beverly Hills.)

Red giants can be seen surrounding the central part of the cluster, old bloated stars that are running out of fuel, their outer layers expanding.

vista-survey-telescopeThe background stars in the image are part of the Small Magellanic Cloud, which was in the distance behind 47 Tucanae when this image was taken.

VISTA is the world’s largest telescope dedicated to mapping the sky in near-infrared wavelengths. Located at ESO’s Paranal Observatory in Chile, VISTA is revealing new views of the southern sky. Read more about the VISTA survey here.

Image credit: ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit

The Paranal and the Shadow of the Earth

This beautiful photo, taken by ESO photo ambassador Babak Tafreshi, shows the European Southern Observatory’s Very Large Telescope array and VISTA telescope atop the peaks of the Cerro Paranal in Chile’s Atacama Desert. In the distance the Earth’s shadow extends outward toward the horizon, divided from the bluer daytime sky by the dusky pink “Belt of Venus.”

At an altitude of 2,635 meters (8,645 feet) the Paranal looks down onto a sea of clouds covering the Pacific Ocean, visible at right, whose shores lie 12 km in the distance.

Image credit: ESO/B. Tafreshi (twanight.org

VISTA View Is Chock Full Of Galaxies

Mosaic of infrared survey images from ESO's VISTA reveal over 200,000 distant galaxies. (ESO/UltraVISTA team. Acknowledgement: TERAPIX/CNRS/INSU/CASU.)

[/caption]

See all those tiny points of light in this image? Most of them aren’t stars; they’re entire galaxies, seen by the European Southern Observatory’s VISTA survey telescope located at the Paranal Observatory in Chile.

This is a combination of over 6000 images taken with a total exposure time of 55 hours, and is the widest deep view of the sky ever taken in infrared light.

The galaxies in this VISTA image are only visible in infrared light because they are very far away. The ever-increasing expansion rate of the Universe shifts the light coming from the most distant objects (like early galaxies) out of visible wavelengths and into the infrared spectrum.

(See a full-size version — large 253 mb file.)

ESO’s VISTA (Visual and Infrared Survey Telescope for Astronomy) telescope is the world’s largest and most powerful infrared observatory, and has the ability to peer deep into the Universe to reveal these incredibly distant, incredibly ancient structures.

By studying such faraway objects astronomers can better understand how the structures of galaxies and galactic clusters evolved throughout time.

The region seen in this deep view is an otherwise “unremarkable” and apparently empty section of sky located in the constellation Sextans.

Read more on the ESO website here.

The VISTA telescope in its dome at sunset. Its primary mirror is 4.1 meters wide. G. Hüdepohl/ESO.

 

Two New Globular Star Clusters Discovered By VISTA

This image from VISTA is a tiny part of the VISTA Variables in the Via Lactea (VVV) survey that is systematically studying the central parts of the Milky Way in infrared light. On the right lies the globular star cluster UKS 1 and on the left lies a much less conspicuous new discovery, VVV CL001 — a previously unknown globular, one of just 160 known globular clusters in the Milky Way at the time of writing. The new globular appears as a faint grouping of stars about 25% of the width of the image from the left edge, and about 60% of the way from bottom to top. Credit: ESO/D. Minniti/VVV Team

[/caption]

Where there once was 158, there is now more… Globular clusters, that is. Thanks to ESO’s VISTA survey telescope at the Paranal Observatory in Chile, the Via Lactea (VVV) survey has cut through the gas and dust of the Milky Way to reveal the first star cluster that is far beyond our center. But keep your eyes on the prize, because as dazzling as the cluster called UKS 1 is on the right is, the one named VVV CL001 on the left isn’t as easy to spot.

Need more? Then keep on looking, because VVV CL001 isn’t alone. The next victory for VISTA is VVV CL002, which is shown in the image below. What makes it special? It’s quite possible that VVV CL002 is the closest of its type to the center of our galaxy. While you might think discoveries of this type are commonplace, they are actually out of the ordinary. The last was documented in 2010 and it’s only through systematically studying the central parts of the Milky Way in infrared light that new ones turn up. To add even more excitement to the discovery, there is a possibility that VVV CL001 is gravitationally bound to UKS 1, making it a binary pair! However, without further study, this remains unverified.

This image from VISTA is a tiny part of the VISTA Variables in the Via Lactea (VVV) survey that is systematically studying the central parts of the Milky Way in infrared light. In the centre lies the faint newly found globular star cluster, VVV CL002. This previously unknown globular, which appears as an inconspicuous concentration of faint stars near the centre of the picture, lies close to the centre of the Milky Way. Credit: ESO/D. Minniti/VVV Team

Thanks to the hard work of the VVV team led by Dante Minniti (Pontificia Universidad Catolica de Chile) and Philip Lucas (Centre for Astrophysics Research, University of Hertfordshire, UK) we’re able to feast our eyes on even more. About 15,000 light years away on the other side of the Milky Way, they’ve turned up VVV CL003 – an open cluster. Due the intristic faintness of these new objects, it’s a wonder we can see them at all… In any light!

Original Story Source: ESO Press Release.

New VISTA Within the Unicorn

A new infrared image shows the nearby star formation region Monoceros R2, located some 2700 light-years away in the constellation of Monoceros (the Unicorn).Credit: ESO/J. Emerson/VISTA. Acknowledgment: Cambridge Astronomical Survey Unit

[/caption]

What a gorgeous new infrared image of the region within the Monoceros (Unicorn) constellation taken from ESO’s Paranal Observatory in northern Chile with the amazing VISTA: the Visible and Infrared Survey Telescope for Astronomy. This telescope has a huge field of view, a large mirror and a very sensitive camera and has been churning out image after fantastic image. In this one, VISTA is able to penetrates the dark curtain of cosmic dust and reveals in astonishing detail the folds, loops and filaments sculpted from the dusty interstellar matter by intense particle winds and the radiation emitted by hot young stars.

“When I first saw this image I just said ‘Wow!’” said Jim Emerson, of Queen Mary, University of London and leader of the VISTA consortium. “I was amazed to see all the dust streamers so clearly around the Monoceros R2 cluster, as well as the jets from highly embedded young stellar objects. There is such a great wealth of exciting detail revealed in these VISTA images.”

It shows an active stellar nursery hidden inside a massive dark cloud rich in molecules and dust. Although the Unicorn appears close in the sky to the more familiar Orion Nebula it is actually almost twice as far from Earth, at a distance of about 2,700 light-years.

The width of VISTA’s field of view is equivalent to about 80 light-years at this distance. Since the dust is largely transparent at infrared wavelengths, many young stars that cannot be seen in visible-light images become apparent. The most massive of these stars are less than ten million years old.

In visible light a grouping of massive hot stars creates a beautiful collection of reflection nebulae where the bluish starlight is scattered from parts of the dark, foggy outer layers of the molecular cloud. However, most of the new-born massive stars remain hidden as the thick interstellar dust strongly absorbs their ultraviolet and visible light.

This new image was created from exposures taken in three different parts of the near-infrared spectrum. In molecular clouds like Monoceros R2, the low temperatures and relatively high densities allow molecules to form, such as hydrogen, which under certain conditions emit strongly in the near infrared. Many of the pink and red structures that appear in the VISTA image are probably the glows from molecular hydrogen in outflows from young stars.

Read more about this image at the ESO website.