The Brightest Object Ever Seen in the Universe

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. Credit: ESO/M. Kornmesser

It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2024, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.

Continue reading “The Brightest Object Ever Seen in the Universe”

A New Planet-Hunting Instrument Has Been Installed on the Very Large Telescope

ESO VLT
The setting Sun dips below the horizon of the Pacific Ocean, bathing the Paranal platform in light in this amazing aerial image from the Atacama Desert in northern Chile. Credit: ESO

Exoplanet studies have come a long way in a short time! To date, 5,523 exoplanets have been confirmed in 4,117 systems, with another 9,867 candidates awaiting confirmation. With all these planets available for study, exoplanet researchers have been shifting their focus from detection to characterization – i.e., looking for potential signs of life and biological activity (biosignatures). Some major breakthroughs are expected in the coming years, thanks in part to next-generation observatories like NASA’s James Webb and Nancy Grace Roman Space Telescope and the ESA’s PLAnetary Transits and Oscillations of stars (PLATO) mission.

Several ground-based facilities will also be vital to the characterization of exoplanets, like the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT), and the Thirty Meter Telescope (TMT). But there are also existing observatories that could be upgraded to perform vital exoplanet research. This idea was explored in a recent paper by an international team of astronomers, who presented the first light results of the High-Resolution Imaging and Spectroscopy of Exoplanets (HiRISE) recently installed on the ESO’s Very Large Telescope (VLT) – not to be confused with the High-Resolution Imaging Science Experiment camera on NASA’s Mars Reconnaissance Orbiter (MRO).

Continue reading “A New Planet-Hunting Instrument Has Been Installed on the Very Large Telescope”

One of Neptune's Dark Spots Finally Seen From Earth

This image shows Neptune observed with the MUSE instrument at ESO’s Very Large Telescope (VLT). Credit: ESO/P. Irwin et al.

There’s no getting around it: our Solar System’s gas giants all have big, conspicuous spots on their faces. These include Jupiter’s Great Red Spot, Saturn’s Great White Spot, Uranus’ Great Dark Spot, and Neptune’s Great Dark Spot. Far from blemishes or features that tarnish the planets’ natural beauty, these “spots” are caused by massive storms or other processes in the planets’ atmospheres. While they are extremely large by Earth standards, they are difficult to study by anything other than robotic probes that can get close to the planet.

Neptune’s Great Dark Spot was not discovered until NASA’s Voyager 2 probe flew past the planet in 1989 on its way to the edge of the Solar System. Decades later, scientists are still unsure how this storm originated or what mechanisms drive it today. Using the ESO’s Very Large Telescope (VLT), a team of astronomers was able to observe the Great Dark Spot for the first time using a ground-based telescope. Their results provided the most detailed data on the spot to date and some interesting insights into the nature and origin of this mysterious feature.

Continue reading “One of Neptune's Dark Spots Finally Seen From Earth”

How Old is That Star? Ask a Computer

An open cluster of stars known as IC 4651, a stellar grouping that lies at in the constellation of Ara (The Altar). Credit: ESO

When measuring distances in the Universe, astronomers rely on what is known as the “Distance Ladder” – a succession of methods by which distances are measured to objects that are increasingly far from us. But what about age? Knowing with precision how old stars, star clusters, and galaxies are is also paramount to determining how the cosmos has evolved. Thanks to a new machine learning technique developed by researchers from Keele University, astronomers may have established the first rung on a “cosmic age ladder.”

Continue reading “How Old is That Star? Ask a Computer”

Warm Carbon Increased Suddenly in the Early Universe. Made by the First Stars?

While previous studies have suggested a rise in warm carbon, much larger samples – the basis of the new study – were needed to provide statistics to accurately measure the rate of this growth.

According to the most widely-accepted model of cosmology, the Universe began roughly 13.8 billion years ago with the Big Bang. As the Universe cooled, the fundamental laws of physics (the electroweak force, the strong nuclear force, and gravity) and the first hydrogen atoms formed. By 370,000 years after the Big Bang, the Universe was permeated by neutral hydrogen and very few photons (the Cosmic Dark Ages). During the “Epoch of Reionization” that followed, the first stars and galaxies formed, reoinizing the neutral hydrogen and causing the Universe to become transparent.

For astronomers, the Epoch of Reionization still holds many mysteries, like when certain heavy elements formed. This includes the element carbon, a key ingredient in the formation of planets, an important element in organic processes, and the basis for life as we know it. According to a new study by the ARC Center of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D), it appears that triply-ionized carbon (C iv) existed far sooner than previously thought. Their findings could have drastic implications for our understanding of cosmic evolution.

Continue reading “Warm Carbon Increased Suddenly in the Early Universe. Made by the First Stars?”

A Very Young Star is Forming Near the Milky Way's Supermassive Black Hole

Artist's impression of a young, massive star orbiting Sagittarius A*. Credit: University of Cologne

Since the 1930s, physicists and radio engineer Karl Jansky reported discovering a persistent radio source coming from the center of our galaxy. This source came to be known as Sagittarius A* (Sgr A*), and by the 1970s, astronomers determined that it was a supermassive black hole (SMBH) roughly four million times the mass of our Sun. Since then, astronomers have used increasingly-advanced radio telescopes to study Sgr A* and its surrounding environment. This has led to many exotic discoveries, such as the many “Stars stars” and gaseous “G objects” that orbit it.

The study of these objects and how the powerful gravity of Sgr A* has allowed scientists to test the laws of physics under the most extreme conditions. In a recent study, an international team of researchers led by the University of Cologne made a startling discovery. Based on data collected by multiple observatories, they observed what appears to be a newly-formed star (X3a) in the vicinity of Sgr A*. This discovery raises significant questions about how young stellar objects (YSOs) can form and survive so close to an SMBH, where they should be torn apart by violent gravitational forces.

Continue reading “A Very Young Star is Forming Near the Milky Way's Supermassive Black Hole”

Astronomers Spot Three Interacting Systems with Twin Discs

Artist's conceptualization of the dusty TYC 8241 2652 system as it might have appeared several years ago when it was emitting large amounts of excess infrared radiation. Credit: Gemini Observatory/AURA artwork by Lynette Cook. https://www.gemini.edu/node/11836

According to the most widely-accepted theory about star formation (Nebular Hypothesis), stars and planets form from huge clouds of dust and gas. These clouds undergo gravitational collapse at their center, leading to the birth of new stars, while the rest of the material forms disks around it. Over time, these disks become ring structures that accrete to form systems of planets, planetoids, asteroid belts, and Kuiper belts. For some time, astronomers have questioned how interactions between early stellar environments may affect their formation and evolution.

For instance, it has been theorized that gravitational interactions with a passing star or shock waves from a supernova might have triggered the core collapse that led to our Sun. To investigate this possibility, an international team of astronomers observed three interacting twin disc systems using the Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE) on the ESO’s Very Large Telescope (VLT). Their findings show that due to their dense stellar environments, gravitational encounters between early-stage star systems play a significant role in their evolution.

Continue reading “Astronomers Spot Three Interacting Systems with Twin Discs”

Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star

Astronomers with the SHINE collabortion observed a debris disk containing a Super-Jupiter around a young star. Credit: ALMA (ESO/NAOJ/NRAO); M. Weiss (NRAO/AUI/NSF)

According to the most widely-accepted theory, planetary systems form from large clouds of dust and gas that form disks around young stars. Over time, these disks accrete to create planets of varying size, composition, and distance from their parent star. In the past few decades, observations in the mid- and far-infrared wavelengths have led to the discovery of debris disks around young stars (less than 100 million years old). This has allowed astronomers to study planetary systems in their early history, providing new insight into how systems form and evolve.

This includes the SpHere INfrared survey for Exoplanets (SHINE) consortium, an international team of astronomers dedicated to studying star systems in formation. Using the ESO’s Very Large Telescope (VLT), the SHINE collaboration recently directly imaged and characterized the debris disk of a nearby star (HD 114082) in visible and infrared wavelengths. Combined with data from NASA’s Transiting Exoplanet Space Satellite (TESS), they were able to detect a gas giant many times the size of Jupiter (a “Super-Jupiter”) embedded within the disk.

Continue reading “Astronomers Directly Image Debris Disk and find a Jupiter-Sized Planet Orbiting a Sunlike Star”

Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way

This artist’s impression shows an example of a rogue planet with the Rho Ophiuchi cloud complex visible in the background. Rogue planets have masses comparable to those of the planets in our Solar System but do not orbit a star, instead roaming freely on their own. Image Credit: ESO/M. Kornmesser/S. Guisard

The field of extrasolar planet studies continues to reveal some truly amazing things about our Universe. After decades of having just a handful of exoplanets available for study, astronomers are now working with a total of 4,884 confirmed exoplanets and another 8,288 awaiting confirmation. This number is expected to increase exponentially in the coming years as next-generation missions like the James Webb Space Telescope (JWST), Euclid, PLATO, and the Nancy Grace Roman Space Telescope (RST) reveal tens of thousands more.

In addition to learning a great deal about the types of exoplanets that are out there and what kind of stars are known to give rise to them, astronomers have also made another startling discovery. There is no shortage of exoplanets in our galaxy that don’t have a parent star. Using telescopes from around the world, a team of astronomers recently discovered 70 additional free-floating planets (FFPs), the largest sample of “Rogue Planets” discovered to date, and nearly doubling the number of FFPs available for study.

Continue reading “Astronomers Find 70 Planets Without Stars Floating Free in the Milky Way”

Astronomers see a Moon-Forming Disk Around a Super-Jupiter

Recently, astronomers have been finding protoplanetary discs around certain stars.  Their discovery has helped kick off a new work in planetary formation theory.  But planets aren’t the objects that form from discs of material in space.  Moons do too.  Now, scientists led by Dr. Tomas Stolker of Leiden University and his team have delved deeper into the characteristics of a “protolunar” disc surrounding a “super Jupiter” exoplanet about 500 light-years away.

Continue reading “Astronomers see a Moon-Forming Disk Around a Super-Jupiter”