The James Webb Space Telescope is widely considered to be better than the Hubble Space Telescope. But the JWST doesn’t replace its elder sibling; it’s the Hubble’s successor. The Hubble is nowhere near ready to retire. It’s still a powerful science instrument with lots to contribute. Comparing images of the same object, NGC 5068, from both telescopes illustrates each one’s value and how they can work together.
Earth is a radiation cocoon. Inside that cocoon, the atmosphere and the magnetosphere keep us mostly safe from the Sun’s radiaition. Some ultraviolet light gets through, and can damage us. But reasonable precautions like simply minimizing exposure can keep the Sun’s radiation at bay.
But space is a different matter altogether. Among the many hazards it poses to astronauts, ever-present radiation is one that needs a solution.
Now a team of researchers have developed a new biomaterial to protect astronauts.
Mars’ atmosphere is about 100 times thinner than Earth’s, but there’s still a lot going on in that wispy, carbon dioxide Martian air. The MAVEN spacecraft recently took some exceptional images of Mars using its Imaging UltraViolet Spectrograph (IUVS), revealing dynamic and previously invisible subtleties.
MAVEN took the first-ever images of nightglow on Mars. You may have seen nightglow in images of Earth taken by astronauts on the International Space Station as a dim greenish light surrounding the planet. Nightglow is produced when oxygen and nitrogen atoms collide to form nitric oxide. This is ionized by ultraviolet light from the Sun during the day, and as it travels around to the nightside of the planet, it will glow in ultraviolet.
“The planet will glow as a result of this chemical reaction,” said Nick Schneider, from the Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, speaking today at the American Astronomical Society Division for Planetary Sciences meeting. “This is a common planetary reaction that tells us about the transport of these ingredients and around the planet and show how winds circulate at high altitudes.”
MAVEN’s images show evidence of strong irregularities in Mars’ high altitude winds and circulation patterns and Schneider said these first images will lead to an improved understanding of the circulation patterns that control the behavior of the atmosphere from approximately 37 to 62 miles (about 60 to 100 kilometers) high.
MAVEN’s ultraviolet images also provide insight into cloud formation and ozone in Mars atmosphere.
The images show how water ice clouds form, especially in the afternoon, over the four giant volcanoes on Mars in the Tharsis region. Cloud formation in the afternoon is a common occurrence on Earth, as convection causes water vapor to rise.
“Water ice clouds are very common on Mars and they can tell us about water inventory on the planet,” Schneider said. “In these images you can see an incredible expansion of the clouds over the course of seven hours, forming a cloud bank that must be a thousand miles across.”
He added that this is just the kind of info scientists want to be plugging in to their circulation models to study circulation and the chemistry of Mars’ atmosphere. “This is helping us advance our understanding in these areas, and we’ll be able to study it with MAVEN through full range of Mars’ seasons.”
Schneider explained that MAVEN’s unique orbit allows it to get views of the planet that other orbiters don’t have. One part of its elliptical orbit takes it high above the planet that allows for global views, but it still orbits fast enough to get multiple views as Mars rotates over the course of a day.
“We get to see daily events evolve over time because we return to that orbit every few hours,” he said.
In addition, dayside ultraviolet imagery from the spacecraft shows how ozone amounts change over the seasons. Ozone is destroyed when water vapor is present, so ozone accumulates in the winter polar region where the water vapor has frozen out of the atmosphere. The images show ozone lasting into spring, indicating that global winds are constraining the spread of water vapor from the rest of the planet into winter polar regions.
Wave patterns in the ozone images show wind pattern, as well, helping scientists to study the chemistry and global circulation of Mars’ atmosphere.
Venus and Mercury have been observed transiting the Sun many times over the past few centuries. When these planets are seen passing between the Sun and the Earth, opportunities exist for some great viewing, not to mention serious research. And whereas Mercury makes transits with greater frequency (three times since 2000), a transit of Venus is something of a rare treat.
In June of 2012, Venus made its most recent transit – an event which will not happen again until 2117. Luckily, during this latest event, scientists made some very interesting observations which revealed X-ray and ultraviolet emissions coming from the dark side of Venus. This finding could tell us much about Venus’ magnetic environment, and also help in the study of exoplanets as well.
For the sake of their study (titled “X-raying the Dark Side of Venus“) the team of scientists – led by Masoud Afshari of the University of Palermo and the National Institute of Astrophysics (INAF) – examined data obtained by the x-ray telescope aboard the Hinode (Solar-B) mission, which had been used to observe the Sun and Venus during the 2012 transit.
In a previous study, scientists from the University of Palermo used this data to get truly accurate estimates of Venus’ diameter in the X-ray band. What they observed was that in the visible, UV, and soft X-ray bands, Venus’ optical radius (taking into account its atmosphere) was 80 km larger than its solid body radius. But when observing it in the extreme ultraviolet (EUV) and soft X-ray band, the radius increased by another 70 km.
To determine the cause of this, Afshari and his team combined updated information from Hinode’s x-ray telescope with data obtained by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory (SDO). From this, they concluded that the EUV and X-ray emissions were not the result of a fault within the telescope, and were in fact coming from the dark side of Venus itself.
They also compared the data to observations made by the Chandra X-ray Observatory of Venus in 2001 and again in 2006-7m which showed similar emissions coming from the sunlit side of Venus. In all cases, it seemed clear that Venus had unexplained source of non-visible light coming from its atmosphere, a phenomena which could not be chalked up to scattering caused by the instruments themselves.
Comparing all these observations, the team came up with an interesting conclusion. As they state in their study:
“The effect we are observing could be due to scattering or re-emission occurring in the shadow or wake of Venus. One possibility is due to the very long magnetotail of Venus, ablated by the solar wind and known to reach Earth’s orbit… The emission we observe would be the reemitted radiation integrated along the magnetotail.”
In other words, they postulate that the radiation observed emanating from Venus could be due to solar radiation interacting with Venus’ magnetic field and being scattered along its tail. This would explain why from various studies, the radiation appeared to be coming from Venus’ itself, thus extending and adding optical thickness to its atmosphere.
If true, this finding would not only help us to learn more about Venus’ magnetic environment and assist our exploration of the planet, it would also improve our understanding of exoplanets. For example, many Jupiter-sized planets have been observed orbiting close to their suns (i.e. “Hot Jupiters“). By studying their tails, astronomers may come to learn much about these planets’ magnetic fields (and whether or not they have one).
Afshari and his colleagues hope to conduct future studies to learn more about this phenomenon. And as more exoplanet-hunting missions (like TESS and the James Webb Telescope) get underway, these newfound observations of Venus will likely be put to good use – determining the magnetic environment of distant planets.
A NASA science instrument flying aboard the European Space Agency’s (ESA) Rosetta spacecraft has made a very surprising discovery – namely that the molecular breakup mechanism of “water and carbon dioxide molecules spewing from the comet’s surface” into the atmosphere of comet 67P/Churyumov-Gerasimenko is caused by “electrons close to the surface.”
The surprising results relating to the emission of the comet coma came from measurements gathered by the probes NASA funded Alice instrument and is causing scientists to completely rethink what we know about the wandering bodies, according to the instruments science team.
“The discovery we’re reporting is quite unexpected,” said Alan Stern, principal investigator for the Alice instrument at the Southwest Research Institute (SwRI) in Boulder, Colorado, in a statement.
“It shows us the value of going to comets to observe them up close, since this discovery simply could not have been made from Earth or Earth orbit with any existing or planned observatory. And, it is fundamentally transforming our knowledge of comets.”
A paper reporting the Alice findings has been accepted for publication by the journal Astronomy and Astrophysics, according to statements from NASA and ESA.
Alice is a spectrograph that focuses on sensing the far-ultraviolet wavelength band and is the first instrument of its kind to operate at a comet.
Until now it had been thought that photons from the sun were responsible for causing the molecular breakup, said the team.
The carbon dioxide and water are being released from the nucleus and the excitation breakup occurs barely half a mile above the comet’s nucleus.
“Analysis of the relative intensities of observed atomic emissions allowed the Alice science team to determine the instrument was directly observing the “parent” molecules of water and carbon dioxide that were being broken up by electrons in the immediate vicinity, about six-tenths of a mile (one kilometer) from the comet’s nucleus.”
The excitation mechanism is detailed in the graphic below.
“The spatial variation of the emissions along the slit indicates that the excitation occurs within a few hundred meters of the surface and the gas and dust production are correlated,” according to the Astronomy and Astrophysics journal paper.
The data shows that the water and CO2 molecules break up via a two-step process.
“First, an ultraviolet photon from the Sun hits a water molecule in the comet’s coma and ionises it, knocking out an energetic electron. This electron then hits another water molecule in the coma, breaking it apart into two hydrogen atoms and one oxygen, and energising them in the process. These atoms then emit ultraviolet light that is detected at characteristic wavelengths by Alice.”
“Similarly, it is the impact of an electron with a carbon dioxide molecule that results in its break-up into atoms and the observed carbon emissions.”
After a decade long chase of over 6.4 billion kilometers (4 Billion miles), ESA’s Rosetta spacecraft arrived at the pockmarked Comet 67P/Churyumov-Gerasimenko on Aug. 6, 2014 for history’s first ever attempt to orbit a comet for long term study.
Since then, Rosetta deployed the Philae landing craft to accomplish history’s first ever touchdown on a comets nucleus. It has also orbited the comet for over 10 months of up close observation, coming at times to as close as 8 kilometers. It is equipped with a suite 11 instruments to analyze every facet of the comet’s nature and environment.
Comet 67P is still becoming more and more active as it orbits closer and closer to the sun over the next two months. The pair reach perihelion on August 13, 2015 at a distance of 186 million km from the Sun, between the orbits of Earth and Mars.
Alice works by examining light emitted from the comet to understand the chemistry of the comet’s atmosphere, or coma and determine the chemical composition with the far-ultraviolet spectrograph.
According to the measurements from Alice, the water and carbon dioxide in the comet’s atmospheric coma originate from plumes erupting from its surface.
“It is similar to those that the Hubble Space Telescope discovered on Jupiter’s moon Europa, with the exception that the electrons at the comet are produced by solar radiation, while the electrons at Europa come from Jupiter’s magnetosphere,” said Paul Feldman, an Alice co-investigator from the Johns Hopkins University in Baltimore, Maryland, in a statement.
Other instruments aboard Rosetta including MIRO, ROSINA and VIRTIS, which study relative abundances of coma constituents, corroborate the Alice findings.
“These early results from Alice demonstrate how important it is to study a comet at different wavelengths and with different techniques, in order to probe various aspects of the comet environment,” says ESA’s Rosetta project scientist Matt Taylor, in a statement.
“We’re actively watching how the comet evolves as it moves closer to the Sun along its orbit towards perihelion in August, seeing how the plumes become more active due to solar heating, and studying the effects of the comet’s interaction with the solar wind.”
Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.