This Supernova Had A ‘Delayed Detonation’

G1.9+0.3 in an image by the Chandra X-ray Observatory. Credit: X-ray (NASA/CXC/NCSU/K.Borkowski et al.); Optical (DSS)

In 2008, astronomers discovered a star relatively nearby Earth went kablooie some 28,000 light-years away from us. Sharp-eyed astronomers, as they will do, trained their telescopes on it to snap pictures and take observations. Now, fresh observations from the orbiting Chandra X-ray Observatory suggest that supernova was actually a double-barrelled explosion.

This composite picture of G1.9+0.3, coupled with models by astronomers, suggest that this star had a “delayed detonation,” NASA stated.

“First, nuclear reactions occur in a slowly expanding wavefront, producing iron and similar elements. The energy from these reactions causes the star to expand, changing its density and allowing a much faster-moving detonation front of nuclear reactions to occur.”

To explain a bit better what’s going on with this star, there are two main types of supernovas:

In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA
In a Type Ia supernova, a white dwarf (left) draws matter from a companion star until its mass hits a limit which leads to collapse and then explosion. Credit: NASA

– Type Ia: When a white dwarf merges with another white dwarf, or picks up matter from a close star companion. When enough mass accretes on the white dwarf, it reaches a critical density where carbon and oxygen fuse, then explodes.

– Type II: When a massive star reaches the end of its life, runs out of nuclear fuel and sees its iron core collapse.

NASA said this was a Type Ia supernova that “ejected stellar debris at high velocities, creating the supernova remnant that is seen today by Chandra and other telescopes.”

New research shows that some old stars known as white dwarfs might be held up by their rapid spins, and when they slow down, they explode as Type Ia supernovae. Thousands of these "time bombs" could be scattered throughout our Galaxy. In this artist's conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet.   Credit: David A. Aguilar (CfA)
In this artist’s conception, a supernova explosion is about to obliterate an orbiting Saturn-like planet. Credit: David A. Aguilar (CfA)

You can actually see the different energies from the explosion in this picture, with red low-energy X-rays, green intermediate energies and blue high-energies.

“The Chandra data show that most of the X-ray emission is “synchrotron radiation,” produced by extremely energetic electrons accelerated in the rapidly expanding blast wave of the supernova. This emission gives information about the origin of cosmic rays — energetic particles that constantly strike the Earth’s atmosphere — but not much information about Type Ia supernovas,” NASA stated.

Also, unusually, this is an assymetrical explosion. There could have been variations in how it expanded, but astronomers are looking to map this out with future observations with Chandra and the National Science Foundation’s Karl G. Jansky Very Large Array.

Check out more information about this supernova in the scientific paper led by North Carolina State University.

Source: NASA

Hubble Provides Evidence for ‘Double Degenerate Progenitor’ Supernova

Supernova remnant SNR 0509-67.5. Supernovae provided the heavier elements in the Sun. Image credit: NASA/ESA/CXC
Supernova remnant SNR 0509-67.5. Supernovae provided the heavier elements in the Sun. Image credit: NASA/ESA/CXC

[/caption]

What happened 400 years ago to create this stunningly beautiful supernova remnant – and were there two culprits or just one? This Hubble Space Telescope view of a Type Ia-created remnant has helped astronomers solve a longstanding mystery on the type of stars that cause some supernovae, known as a progenitor.

“Up until this point we haven’t really known where this type of supernova came from, despite studying them for decades,” said Ashley Pagnotta of Louisiana State University, speaking at a press briefing at the American Astronomical Society meeting on Wednesday. “But we now can say we have the first definitive identification of a Type 1a progenitor, and we know this one must have had a double degenerate progenitor – it is the only option.”

This supernova remnant that has a telephone number-like name of SNR 0509-67.5, lies 170,000 light-years away in the Large Magellanic Cloud galaxy.

Astronomers have long suspected that two stars were responsible for the explosion – as is the case with most type 1a supernovae — but weren’t sure what triggered the explosion. One explanation could be that it was caused by mass transfer from a companion star where a nearby star spills material onto a white dwarf companion, setting off a chain reaction that causes one of the most powerful explosions in the universe. This is known as the ‘single-degenerate’ path – which seems to be the most plausible, common and most preferred explanation for many Type 1a supernovae.

The other option is the collision of two white dwarfs, which is known as ‘double-degenerate, which seems to be the less common and not as widely accepted explanation for supernovae. To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appear to exist; indeed, there appear to be just handful that have been discovered so far.

The problem with SNR 0509-67.5 was that astronomers could not find any remnant of the companion star. That’s why the double degenerate scenario was considered, as in that case, there won’t be anything left as both white dwarfs are consumed in the explosion. In the case of a single progenitor, the non-white dwarf star will still be near the explosion site and will still look very much as it did before the explosion.

Therefore, a possible way to distinguish between the various progenitor models has been to look deep in the center of an old supernova remnant to search for the ex-companion star.

“We know Hubble has the sensitivity necessary to detect the faintest white dwarf remnants that could have caused such explosions,” said lead investigator Bradley Schaefer from LSU. “The logic here is the same as the famous quote from Sherlock Holmes: ‘when you have eliminated the impossible, whatever remains, however improbable, must be the truth.'”

In 2010, Schaefer and Pagnotta were preparing a proposal to look for any faint ex-companion stars in the center of four supernova remnants in the Large Magellanic Cloud when they saw an Astronomy Picture of the Day photo showing an image the Hubble Space Telescope had already had taken of one of their target remnants, SNR 0509-67.5.

(Note: the January 12, 2012 APOD image is of SNR 0509-67.5!)

Because the remnant appears as a nice symmetric shell or bubble, the geometric center can be determined accurately. In analyzing in more detail the central region, they found it to be completely empty of stars down to the limit of the faintest objects Hubble can detect in the photos. The young age also means that any surviving stars have not moved far from the site of the explosion. They were able to cross off the list all the possible single degenerate scenarios, and were left with the double degenerate model in which two white dwarfs collide.

“Since we can exclude all the possible single degenerates, we know it must be a double degenerate,” Pagnotta said. “The cause of SNR 0509-67.5 can be explained best by two tightly orbiting white dwarf stars spiraling closer and closer until they collided and exploded.”

Pagnotta also noted that this supernova is actually not a normal Type 1a supernova, but a subclass called 1991t, which is an extra bright supernova.

A paper in 2010 by Marat Gilfanov of the Max Planck Institute for Astrophysics indicated that perhaps many Type 1a supernova were caused by two white dwarf stars colliding, which was a surprise to many astronomers. Additionally, a review of the recent supernova SN 2011fe, which exploded in August of 2011, explores the possibility of the double degenerate progenitor. An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes.

Schaefer and Pagnotta plan to look at other supernova remnants in the Large Magellenic Cloud to further test their observations.

Pagnotta confirmed that anyone with an internet connection could have made this discovery, as all the Hubble images used were available publicly, and the use of the Hubble data was sparked by APOD.

Sources: Science Paper by Bradley E. Schaefer and Ashley Pagnotta (PDF document), HubbleSite, AAS press briefing

Supernova Discovered in M51 The Whirlpool Galaxy

M51 Hubble Remix

A new supernova (exploding star) has been discovered in the famous Whirlpool Galaxy, M51.

M51, The Whirlpool galaxy is a galaxy found in the constellation of Canes Venatici, very near the star Alkaid in the handle of the saucepan asterism of the big dipper. Easily found with binoculars or a small telescope.

The discovery was made on June 2nd by French astronomers and the supernova is reported to be around magnitude 14. More information (In French) can be found here or translated version here.

Image by BBC Sky at Night Presenter Pete Lawrence

The supernova will be quite tricky to spot visually and you may need a good sized dobsonian or similar telescope to spot it, but it will be a easy target for those interested in astro imaging.

The whirlpool galaxy was the first galaxy discovered with a spiral structure and is one of the most recognisable and famous objects in the sky.

Merging White Dwarfs Set Off Supernovae

Composite image of M31. Inset shows central region as seen by Chandra. Credit: NASA/CXC/MPA/ M.Gilfanov & A.Bogdan;

New results from the Chandra X-Ray Observatory suggests that the majority of Type Ia supernovae occur due to the merger of two white dwarfs. This new finding provides a major advance in understanding the type of supernovae that astronomers use to measure the expansion of the Universe, which in turns allows astronomers to study dark energy which is believed to pervade the universe. “It was a major embarrassment that we still didn’t know the conditions and progenitor systems of some the most spectacular explosions in the universe,” said Marat Gilfanov of the Max Planck Institute for Astrophysics, at a press conference with reporters today. Gilfanov is the lead author of the study that appears in the Feb. 18 edition of the journal Nature.

Type Ia supernovae serve as cosmic mile markers to measure expansion of the universe. Because they can be seen at large distances, and they follow a reliable pattern of brightness. However, until now, scientists have been unsure what actually causes the explosions.

Most scientists agree a Type Ia supernova occurs when a white dwarf star — a collapsed remnant of an elderly star — exceeds its weight limit, becomes unstable and explodes. The two leading candidates for what pushes the white dwarf over the edge are the merging of two white dwarfs, or accretion, a process in which the white dwarf pulls material from a sun-like companion star until it exceeds its weight limit.

“Our results suggest the supernovae in the galaxies we studied almost all come from two white dwarfs merging,” said co-author Akos Bogdan, also of Max Planck. “This is probably not what many astronomers would expect.”

The difference between these two scenarios may have implications for how these supernovae can be used as “standard candles” — objects of a known brightness — to track vast cosmic distances. Because white dwarfs can come in a range of masses, the merger of two could result in explosions that vary somewhat in brightness.

Because these two scenarios would generate different amounts of X-ray emission, Gilfanov and Bogdan used Chandra to observe five nearby elliptical galaxies and the central region of the Andromeda galaxy. A Type Ia supernova caused by accreting material produces significant X-ray emission prior to the explosion. A supernova from a merger of two white dwarfs, on the other hand, would create significantly less X-ray emission than the accretion scenario.

The scientists found the observed X-ray emission was a factor of 30 to 50 times smaller than expected from the accretion scenario, effectively ruling it out.

So, for example, the Chandra image above would be about 40 times brighter than observed if Type Ia supernova in the bulge of this galaxy were triggered by material from a normal star falling onto a white dwarf star. Similar results for five elliptical galaxies were found.

This implies that white dwarf mergers dominate in these galaxies.

An open question remains whether these white dwarf mergers are the primary catalyst for Type Ia supernovae in spiral galaxies. Further studies are required to know if supernovae in spiral galaxies are caused by mergers or a mixture of the two processes. Another intriguing consequence of this result is that a pair of white dwarfs is relatively hard to spot, even with the best telescopes.

“To many astrophysicists, the merger scenario seemed to be less likely because too few double-white-dwarf systems appeared to exist,” said Gilfanov. “Now this path to supernovae will have to be investigated in more detail.”

Source: NASA

Supernova Simulations Point to White Dwarf Mergers

Type Ia supernovae, some of the most violent and luminous explosions in the Universe, have become a handy tool for astronomers to measure the size and expansion of the Universe itself. Because they explode with a rather specific peak luminosity, they can be used as “standard candles” to measure distances. New research presented at the American Astronomical Society meeting this week points to the increased likelihood that the mergers of the stars that create these explosions, white dwarfs, is more likely than previously thought, and could explain the properties of some Type Ia supernovae that are curiously less luminous than expected.

Research presented by Rüdiger Pakmor et al. from the Max-Planck Institute for Astrophysics in Garching, Germany simulated the merger of two white dwarfs in a binary system, and showed that these simulations match previously observed supernovae with odd characteristics, specifically that of 1991bg. That supernova, and others observed since, was curiously less luminous than should have been expected if it were a Type Ia supernovae.

Type Ia supernovae occur when there are two stars orbiting each other in a binary system. In one scenario, one of the stars becomes a white dwarf, a small but very, very dense star, and steals matter from the other, pushing itself over the Chandrasekhar limit – 1.4 times the mass of the Sun – and undergoing a thermonuclear explosion.

Another cause for these types of supernovae could be the merger of both the stars in the system. In the scenario analyzed by these researchers, both stars were white dwarfs of masses just under that of the Sun: .83-0.9 solar masses.

The researchers showed that as the system loses energy due to the emission of gravitational waves, the two white dwarfs approach each other. As they merge, part of the material in one of the stars crashes into the other and heats up the carbon and oxygen, creating a thermonuclear explosion seen in Type Ia supernovae.

You can watch an animation of the simulated merger courtesy of the Max-Planck Institute’s Supernova Research Group right here.

Observations of supernovae like 1991bg show them to burn a smaller amount of nickel 56, about 0.1 solar masses, than regular Type Ia supernovae, which typically burn 0.4-0.9 solar masses of nickel. This makes them less luminous, because the radiative decay of the nickel is one of the phenomenon that gives the luminous display of Type Ia supernovae its punch.

“With our detailed explosion simulations, we could predict observables that indeed closely match actual observations of Type Ia supernovae,” said Friedrich Röpke, a co-author of the paper.

Their simulations show that when the two white dwarfs merge, the density of the system is less than in typical Type Ia supernovae, and thus less nickel is produced. The researchers note in their paper that these types of white dwarf mergers could comprise between 2-11 percent of the Type Ia supernovae observed.

Understanding the mechanisms that create these fantastic explosions is a necessary step in getting a handle on both the extent of our Universe and its expansion, as well as the diversity of Type Ia supernovae themselves.

If you would like to learn more about their research and the details of their computer modeling, the paper is available on Arxiv here. Their results will also be published in the January 7, 2010 edition of Nature.

Source: AAS press release, Arxiv paper

Could A Faraway Supernova Threaten Earth?

Supernovae, just like any other explosions, are really cool. But, just like any other explosion, it’s preferable to have them happen at a good distance. The star T Pyxidis, which lies over 3,000 light-years away from the Earth in the constellation Pyxis, was previously thought to be far enough away that if anything happened in the way of a supernova, we’d be pretty safe.

According to Edward Sion, Professor of Astronomy and Physics at Villanova University, T Pyxidis may be in fact a “ticking time bomb,” and potential threat to the Earth if it were to go supernova, which it may do sometime in the future, though very, very far in the future on our timescale: by Scion’s calculations, at least 10 million years.

Sion presented his findings at the American Astronomical Society Meeting in Washington, D.C. earlier today. T Pyxidis, which lies in the constellation Pyxis, is what is called a recurring nova. The star, which is a white dwarf, accretes gas from a companion star. As the amount of matter increases in the white dwarf, it occasionally builds up to the point where there is a runaway thermonuclear reaction in the star, and it ejects large quantities of material.

T Pyxidis has had five different outbursts over the course of observations of the star. It was the American Association of Variable Star Observers’ variable star of the month in April, 2002.  The first was in 1890, followed by another outburst in 1902 (these two were discovered much later on photographic plates in the Harvard plate collection). The next three were in 1920, 1944 and 1967. Its average for outbursts is about 19 years, but there hasn’t been one since the 1966 brightening.

The distance estimate to T Pyxidis, revised to 3,260 light-years from the previously estimated distance of 6,000 light-years has prompted a reconsideration of the details about the white dwarf. Hubble images that have been taken of the star would then have to be re-examined so as to revise the amount of mass the star is expected to be ejecting.

If the recurring novae are ejecting enough material, then the white dwarf would stay small enough to continue to go through the phase of recurring novae. However, if the shells of gas repeatedly ejected by the star do not carry enough mass away, it would eventually build up to pass the Chandrasekhar limit – 1.4 times the mass of the Sun – and become a Type Ia supernova, one of the most destructive events in our Universe.

Sion concluded the presentation with the statement (shown here on his last powerpoint slide) that “A Type Ia supernova exploding within 1000 parsecs of Earth will greatly affect our planet”

A supernova within 100 light-years of the Earth would likely be a catastrophic event for our planet, but something as far out as T Pyxidis may or may not damage the Earth. One of the journalists in attendance pointed out this possibility during the questions session and Sion said that the main danger lies in the amount of X-rays and gamma rays that stream from such an event, which could destroy the protective ozone layer of the Earth and leave the planet vulnerable to the ultraviolet light streaming from the Sun.

There remains some doubt as to whether T Pyxidis will go supernova at all. There is a good treatment of this subject in “The Nova Shell and Evolution of the Recurrent Nova T Pyxidis” by Bradley E. Schaefer et al. on Arxiv.

If you’re worried about the dangers of exploding stars, you should check out this video by Phil Plait, the Bad Astronomer. He’ll calm you down.

Source: AAS Press Conference on USTREAM, Space.com

Can the Recurrent Novae RS Oph Become Type Ia Supernovae?

A new kind of supernova. Credit: Tony Piro

[/caption]

The classical scenario for creating Type Ia supernovae is a white dwarf star accreting mass from a nearby star entering the red giant phase. The growing red giant fills its Roche lobe and matter falls onto the white dwarf, pushing it over the Chandrasekhar limit causing a supernova. However, this assumes that the white dwarf is already right at the tipping point. In many cases, the white dwarf is well below the Chandrasekhar limit and matter piles up on the surface. It then ignites as a smaller nova blowing off most (if not all) of the material it worked so hard to collect.

A new paper by a group of European astronomers considers how this cycle will affect the overall accumulation of mass on the white dwarfs which undergo recurrent novae. In a previous, more simplistic 1D study (Yaron et al. 2005) simulations revealed that a net mass gain is possible if the white dwarf accumulates an average of 10-8 times the mass of the Sun each year. However, at this rate, the study suggested that most of the mass would be lost again in the resulting novae, and even a minuscule gain of 0.05 solar masses would take on the order of millions of years. If this was the case, then building up the required mass to explode as a Type Ia supernova would be out of reach for many white dwarfs since, if it took too much longer, the companion’s red giant phase would end and the dwarf would be out of material to gobble.

For their new study, the European team simulated the case of RS Ophiuchi (RS Oph) in a 3D situation. The simulation did not only take into consideration the mass loss from the giant onto the dwarf, but also included the evolution of the orbits (which would also influence the accretion rates) and varied rates for the velocity of the matter being lost from the giant. Unsurprisingly, the team found that for slower mass loss rates from the giant, the dwarf was able to accumulate more. “The accretion rates change from
around 10%  [of the mass of the red giant] in the slow case to roughly 2% in the fast case.”

What was not immediately obvious is that the loss of angular momentum as the giant shed its layers resulted in a decrease in the separation of the stars. In turn, this meant the giant and dwarf grew closer together and the accretion rate increased further. Overall they determined the current accretion rate for RS Oph was already higher than the 10-8 solar masses per year necessary for a net gain and due to the decreasing orbital distance, it would only improve. Since RS Oph’s mass is precipitously close to the 1.4 solar mass Chandrasekhar limit, they suggest, “RS Oph is a good candidate for a progenitor of an SN Ia.”

Astronomers Find Type Ia Supernova Just Waiting to Happen

Type Ia supernovae are a mystery because no one can predict when or where one might occur. But astronomers are hedging their bets on V445 Puppis. A so-called “vampire white dwarf” that underwent a nova outburst after gulping down part of its companion’s matter in 2000, now, it appears this double star system is a prime candidate for exploding. “Whether V445 Puppis will eventually explode as a supernova, or if the current nova outburst has pre-empted that pathway by ejecting too much matter back into space is still unclear,” said Patrick Woudt, from the University of Cape Town and lead author of the paper reporting the results. “But we have here a pretty good suspect for a future Type Ia supernova!”

This is the first, and so far only nova showing no evidence at all for hydrogen, and provides the first evidence for an outburst on the surface of a white dwarf dominated by helium. “This is critical, as we know that Type Ia supernovae lack hydrogen,” said Danny Steeghs, from the University of Warwick, UK, “and the companion star in V445 Pup fits this nicely by also lacking hydrogen, instead dumping mainly helium gas onto the white dwarf.”

Click here to watch a movie of the expanding shell of V445 Puppis.

The astronomers have determined the system is about 25,000 light-years from the Sun, and it has an intrinsic brightness of over 10,000 times our Sun. This implies that the vampire white dwarf in this system has a high mass that is near its fatal limit and is still simultaneously being fed by its companion at a high rate.

“One of the major problems in modern astrophysics is the fact that we still do not know exactly what kinds of stellar system explode as a Type Ia supernova,” said Woudt, “As these supernovae play a crucial role in showing that the Universe’s expansion is currently accelerating, pushed by a mysterious dark energy, it is rather embarrassing.”

Shell around V445 Puppis  (March 2005). Credit: ESO
Shell around V445 Puppis (March 2005). Credit: ESO

Woudt and his team used the ESO’s Very Large Telescope (VLT) to obtain very sharp images of V445 Puppis over a time span of two years. The images show a bipolar shell, initially with a very narrow waist, with lobes on each side. Two knots are also seen at both the extreme ends of the shell, which appear to move at about 30 million kilometers per hour. The shell — unlike any previously observed for a nova — is itself moving at about 24 million kilometers per hour. A thick disc of dust, which must have been produced during the last outburst, obscures the two central stars.

As Steeghs said, one defining characteristic of Type Ia supernovae is the lack of hydrogen in their spectrum. Yet hydrogen is the most common chemical element in the Universe. Such supernovae most likely arise in systems composed of two stars, one of them being the end product of the life of sun-like stars, or white dwarfs. When such white dwarfs, acting as stellar vampires that suck matter from their companion, become heavier than a given limit, they become unstable and explode.

The build-up is not a simple process. As the white dwarf cannibalizes its prey, matter accumulates on its surface. If this layer becomes too dense, it becomes unstable and erupts as a nova. These controlled, mini-explosions eject part of the accumulated matter back into space. The crucial question is thus to know whether the white dwarf can manage to gain weight despite the outburst, that is, if some of the matter taken from the companion stays on the white dwarf, so that it will eventually become heavy enough to explode as a supernova.

Read the team’s paper.

Source: ESO

Chandrasekhar Limit

Subrahmanyan Chandrasekhar (credit: University of Chicago Press)

[/caption]
When a human puts on too much weight, there is an increased risk of heart attack; when a white dwarf star puts on too much weight (i.e. adds mass), there is the mother of all fatal heart attacks, a supernova explosion. The greatest mass a white dwarf star can have before it goes supernova is called the Chandrasekhar limit, after astrophysicist Subrahmanyan Chandrasekhar, who worked it out in the 1930s. Its value is approx 1.4 sols, or 1.4 times the mass of our Sun (the exact value depends somewhat on the white dwarf’s composition how fast it’s spinning, etc).

White dwarfs are the end of the road for most stars; once they have used up all their available hydrogen ‘fuel’, low mass stars shed their outermost shells to form planetary nebulae, leaving a high density core of carbon, oxygen, and nitrogen (that’s a summary, it’s actually a bit more complicated). The star can’t collapse further because of electron degeneracy pressure, a quantum effect that comes from the fact that electrons are fermions (technically, only two fermions can occupy a given energy state, one spin up and one spin down).

So what happens in the core of a massive star, one whose core weighs in at more than 1.4 sols? As long as the star is still ‘burning’ nuclear fuel – helium, then carbon etc, then neon, then … – the core will not collapse because it is very hot (electron degeneracy pressure won’t hold it up ’cause it’s too massive). But once the core gets to iron, no more burning is possible, and the core will collapse, spectacularly, producing a core collapse supernova.

There is a way a white dwarf can go out with a bang rather than a whimper; by getting a little help from a friend. If the white dwarf has a close binary companion, and if that companion is a giant star, some of the hydrogen in its outer shell may end up on the white dwarf’s surface (there are several ways this can happen). The white dwarf thus adds mass, and every so often the thin hydrogen envelope blows up, and we see a nova. One day, though, the extra mass may put it over the limit, the Chandrasekhar limit … the temperature in its center gets high enough that the carbon ‘ignites’, the ‘flame’ spreads throughout the star, and it becomes a special kind of supernova, a Ia supernova.

For more technical details of the Chandrasekhar limit, Richard Fitzpatrick of the University of Texas at Austin has an online Thermodynamics & Statistical Mechanics course, which includes a page on the Chandrasekhar limit.

Supernovae are very important to astronomy, so you won’t be surprised to learn that there are lots of Universe Today stories on the Chandrasekhar limit! Some examples: White Dwarf Theories Get More Proof, White Dwarf “Close” to Exploding as Supernova, and Colliding White Dwarfs Caused a Powerful Supernova.

Astronomy Cast Episode 90 (The Scientific Method) includes a look at how Chandrasekhar worked out the limit that now bears his name, and Where Do Stars Go When They Die? also covers this topic.

References:
Wikipedia
http://www.bluffton.edu/~bergerd/NSC_111/stars.html