Evidence Continues To Mount For Ninth Planet

Ever since its existence was first proposed, the evidence for Planet 9 continues to mount. But of course, said evidence has been entirely indirect, consisting mostly of studies that show how the orbits of Trans-Neptunian Objects (TNOs) are consistent with a large object crossing their path. However, evidence is also emerging that comes from the center of the Solar System itself.

This latest line of evidence comes from Caltech, where researchers Elizabeth Bailey, Konstantin Batygin, and Michael E. Brown (the latter of whom were the ones who first proposed Planet 9’s existence) have published a new study linking solar obliquity to the existence of Planet 9. Essentially, they claim that the axial tilt of the Sun (6°) could be due to the gravitational influence a large planet with an extreme orbit.

To recap, the issue of Planet was first raised in 2014 by astronomers Scott Sheppard and Chadwick Trujillo. Noting the similarities in the orbits of distant Trans-Neptunian Objects (TNOs), they postulated that a massive object was likely influencing them. This was followed in 2016 by Konstantin Batygin and Michael E. Brown of Caltech suggesting that an undiscovered planet was the culprit.

The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)
The orbits of several KBOs provide indications about the possible existence of Planet 9. Credit: Caltech/R. Hurt (IPAC)

Calling this body Planet 9, they speculated that it had a mass 10 times greater than that of Earth, and took 20,000 years to complete a single orbit of our Sun. They also speculated that its orbit was tilted relative to the other planets of our Solar System, and extremely eccentric. And little by little, examinations of other Solar bodies have shown that Planet 9 is likely out there.

For the sake of their study – “Solar Obliquity Induced by Planet Nine“, which was recently published in the Astrophysical Journal – the research team (led by Bailey) looked to the obliquity of the Sun. As they state in their paper, the six-degree axial tilt of the Sun can only be explained in one of two ways – either as a result of an asymmetry that was present during the formation of Solar System, or because of an external source of gravity.

To test this hypothesis, Bailey, Batygin and Brown used an analytic model to test how interactions between Planet 9 and the rest of the Solar System would effect their orbits over the course of the last 4.5 billion years. As Elizabeth Bailey, a graduate student at Caltech’s Division of Geological and Planetary Sciences and the lead author on the paper, told Universe Today via email:

“We simulated the solar system’s motion. Planet 9 forces the solar system to slowly wobble. If Planet 9 is out there, we are in the process of wobbling right now, as we speak! But it happens very slowly, a few degrees tilt per billion years. Meanwhile the sun is not wobbling much,  so it looks like the sun is tilted. A range of Planet 9 parameters cause exactly the configuration of the sun that we see today.

Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign
Animated diagram showing the spacing of the Solar Systems planet’s, the unusually closely spaced orbits of six of the most distant KBOs, and the possible “Planet 9”. Credit: Caltech/nagualdesign

In the end, they concluded that the Sun’s obliquity could only be explained by the influence of giant planet with an extreme orbit, one that is consistent with the characteristics attributed to Planet 9. In other words, the existence of Planet 9 offers an explanation for the Sun’s peculiar behavior, something which has remained a mystery until now.

“Planet Nine was first hypothesized because the orbits of objects in the outer reaches of the solar system are confined in physical space,” said Bailey. “Those orbits would be all over the place unless something is currently stopping them. The only explanation so far is Planet Nine. For over 150 years, people have wondered why the sun is tilted. Personally I’d say that Planet 9 offers the first satisfying explanation. If it exists, it tilted the sun.”

In addition, the subject of Planet 9 was also raised at the joint 48th meeting of the American Astronomical Society’s Division for Planetary Sciences and 11th European Planetary Science Congress, which took place from Oct 16th to 21st in Pasadena, California. During the course of the meeting, researchers from Arizona University shared the results of their own study, which was published back in August.

The Arizona research team was led by Renu Malhotra, a Regents’ Professor of Planetary Sciences in the University of Arizona’s Lunar and Planetary Lab. For the sake of their study, titled “Corralling a Distant Planet with Extreme Resonant Kuiper Belt Objects“, they examined the orbital patterns of four extreme Kuiper Belt Objects (KBOs), which have the longest orbital periods of any known objects.

Artist's impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science
Artist’s impression of the the possible Planet 9 at the edge of the Solar System. Credit: Robin Dienel/Carnegie Science

According to their calculations, the presence of a massive planet – one that would complete an orbit around the Sun every 17,117 years, and at an average distance (semimajor axis) of 665 AU – would explain the orbital pattern of these four objects. These results were consistent with the estimates concerning the orbital period of Planet 9, its orbital path, and it mass.

“We analyzed the data of these most distant Kuiper Belt objects,” Malhotra said, “and noticed something peculiar, suggesting they were in some kind of resonances with an unseen planet… Our paper provides more specific estimates for the mass and orbit that this planet would have, and, more importantly, constraints on its current position within its orbit.”

Looks like Planet 9’s days of hiding in the outer Solar System may be numbered!

Further Reading: arXiv, Caltech, Europlanet

The (Possible) Dwarf Planet 2007 OR10

Over the course of the past decade, more and more objects have been discovered within the Trans-Neptunian region. With every new find, we have learned more about the history of our Solar System and the mysteries it holds. At the same time, these finds have forced astronomers to reexamine astronomical conventions that have been in place for decades.

Consider 2007 OR10, a Trans-Neptunian Object (TNO) located within the scattered disc that at one time went by the nicknames of “the seventh dwarf” and “Snow White”. Approximately the same size as Haumea, it is believed to be a dwarf planet, and is currently the largest object in the Solar System that does not have a name.

Discovery and Naming:

2007 OR10 was discovered in 2007 by Meg Schwamb, a PhD candidate at Caltech and a graduate student of Michael Brown, while working out of the Palomar Observatory. The object was colloquially referred to as the “seventh dwarf” (from Snow White and the Seven Dwarfs) since it was the seventh object to be discovered by Brown’s team (after Quaoar in 2002, Sedna in 2003, Haumea and Orcus in 2004, and Makemake and Eris in 2005).

Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon
Comparison of Sedna with the other largest TNOs and with Earth (all to scale). Credit: NASA/Lexicon

At the time of its discovery, the object appeared to be very large and very white, which led to Brown giving it the other nickname of “Snow White”. However, subsequent observation has revealed that the planet is actually one of the reddest in the Kuiper Belt, comparable only to Haumea. As a result, the nickname was dropped and the object is still designated as 2007 OR10.

The discovery of 2007 OR10 would not be formally announced until January 7th, 2009.

Size, Mass and Orbit:

A study published in 2011 by Brown – in collaboration with A.J. Burgasser (University of California San Diego) and W.C. Fraser (MIT) – 2007 OR10’s diameter was estimated to be between 1000-1500 km. These estimates were based on photometry data obtained in 2010 using the Magellan Baade Telescope at the Las Campanas Observatory in Chile, and from spectral data obtained by the Hubble Space Telescope.

However, a survey conducted in 2012 by Pablo Santos Sanz et al. of the Trans-Neptunian region produced an estimate of 1280±210 km based on the object’s size, albedo, and thermal properties. Combined with its absolute magnitude and albedo, 2007 OR10 is the largest unnamed object and the fifth brightest TNO in the Solar System. No estimates of its mass have been made as of yet.

2007 OR10 also has a highly eccentric orbit (0.5058) with an inclination of 30.9376°. What this means is that at perihelion, it is roughly 33 AU (4.9 x 109 km/30.67 x 109 mi) from our Sun while at aphelion, it is as distant as 100.66 AU (1.5 x 1010 km/9.36 x 1010 mi). It also has an orbital period of 546.6 years, which means that the last time it was at perihelion was 1857 and it won’t reach aphelion until 2130. As such, it is currently the second-farthest known large body in the Solar System, and  will be farther out than both Sedna and Eris by 2045.

Composition:

According to the spectral data obtained by Brown, Burgasser and Fraser, 2007 OR10 shows infrared signatures for both water ice and methane, which indicates that it is likely similar in composition to Quaoar. Concurrent with this, the reddish appearance of 2007 OR10 is believed to be due to presence of tholins in the surface ice, which are caused by the irradiation of methane by ultraviolet radiation.

The presence of red methane frost on the surfaces of both 2007 OR10 and Quaoar is also seen as an indication of the possible existence of a tenuous methane atmosphere, which would slowly evaporate into space when the objects are closer to the Sun. Although 2007 OR10 comes closer to the Sun than Quaoar, and is thus warm enough that a methane atmosphere should evaporate, its larger mass makes retention of an atmosphere just possible.

Also, the presence of water ice on the surface is believed to imply that the object underwent a brief period of cryovolcanism in its distant past. According to Brown, this period would have been responsible not only for water ice freezing on the surface, but for the creation of an atmosphere that included nitrogen and carbon monoxide. These would have been depleted rather quickly, and a tenuous atmosphere of methane would be all that remains today.

However, more data is required before astronomers can say for sure whether or not 2007 OR10 has an atmosphere, a history of cryovolcanism, and what its interior looks like. Like other KBOs, it is possible that it is differentiated between a mantle of ices and a rocky core. Assuming that there is sufficient antifreeze, or due to the decay of radioactive elements, there may even be a liquid-water ocean at the core-mantle boundary.

Classification:

Though it is too difficult to resolve 2007 OR10’s size based on direct observation, based on calculations of 2007 OR10’s albedo and absolute magnitude, many astronomers believe it to be of sufficient size to have achieved hydrostatic equilibrium. As Brown stated in 2011, 2007 OR10 “must be a dwarf planet even if predominantly rocky”, which is based on a minimum possible diameter of 552 km and what is believed to be the conditions under which hydrostatic equilibrium occurs in cold icy-rock bodies.

That same year, Scott S. Sheppard and his team (which included Chad Trujillo) conducted a survey of bright KBOs (including 2007 OR10) using the Palomar Observatory’s 48 inch Schmidt telescope. According to their findings, they determined that “[a]ssuming moderate albedos, several of the new discoveries from this survey could be in hydrostatic equilibrium and thus could be considered dwarf planets.”

Currently, nothing is known of 2007 OR10’s mass, which is a major factor when determining if a body has achieved hydrostatic equilibrium. This is due in part to there being no known satellite(s) in orbit of the object, which in turn is a major factor in determining the mass of a system. Meanwhile, the IAU has not addressed the possibility of accepting additional dwarf planets since before the discovery of 2007 OR10 was announced.

Alas, much remains to be learned about 2007 OR10. Much like it’s Trans-Neptunian neighbors and fellow KBOs, a lot will depend on future missions and observations being able to learn more about its size, mass, composition, and whether or not it has any satellites. However, given its extreme distance and fact that it is currently moving further and further away, opportunities to observe and explore it via flybys will be limited.

However, if all goes well, this potential dwarf planet could be joining the ranks of such bodies as Pluto, Eris, Ceres, Haumea and Makemake in the not-too-distant future. And with luck, it will be given a name that actually sticks!

We have many interesting articles on Dwarf Planets, the Kuiper Belt, and Plutoids here at Universe Today. Here’s Why Pluto is no longer a planet and how astronomers are predicting Two More Large Planets in the outer Solar System.

Astronomy Cast also has an episode all about Dwarf Planets titled, Episode 194: Dwarf Planets.

For more information, check out the NASA’s Solar System Overview: Dwarf Planets, and the Jet Propulsion Laboratory’s Small-Body Database, as well as Mike Browns Planets.

 

The Dwarf Planet (and Plutoid) Makemake

In 2003, astronomer Mike Brown and his team from Caltech began a discovery process which would change the way we think of our Solar System. Initially, it was the discovery of a body with a comparable mass to Pluto (Eris) that challenged the definition of the word “planet”. But in the months and years that followed, more discoveries would be made that further underlined the need for a new system of classification.

This included the discovery of Haumea, Orcus and Salacia in 2004, and Makemake in 2005. Like many other Trans-Neptunian Objects (TNOs) and Kuiper Belt Objects (KBOs) discovered in the past decade, this planet’s status is the subject of some debate. However, the IAU was quick to designate it as the fourth dwarf planet in our Solar System, and the third “Plutoid“.

Discovery and Naming:

Makemake was discovered on March 31st, 2005, at the Palomar Observatory by a team consisting of Mike Brown, Chad Trujillo and David Rainowitz. The discovery was announced to the public on July 29th, 2005, coincident with the announcement of the discovery of Eris. Originally, Brown and his team had been intent on waiting for further confirmation, but chose to proceed after a different team in Spain announced the discovery of Haumea on July 27th.

The provisional designation of 2005 FY9 was given to Makemake when the discovery was first made public. Before that, the discovery team used the codename “Easterbunny” for the object, because it was observed shortly after Easter. In July of 2008, in accordance with IAU rules for classical Kuiper Belt Objects, 2005 FY9 was given the name of a creator deity.

 Photograph of Makemake taken by the Hubble Space Telescope. Credit: NASA/Mike Brown
Photograph of Makemake taken by the Hubble Space Telescope. Credit: NASA/Mike Brown

In order to preserve the object’s connection with Easter, the object was given a name derived from the mythos of the Rapa Nui (the native people of Easter Island) to whom Makemake is the creator God. It was officially classified as a dwarf planet and a plutoid by the International Astronomical Union (IAU) on July 19th, 2008.

Size, Mass and Orbit:

Based on infrared observations conducted by Brown and his team using the Spitzer Space Telescope, which were compared to similar observations made by the Herschel Space Telescope, an estimated diameter of 1,360 – 1,480 km was made. Subsequent observations made during the 2011 stellar occulation by Makemake produced estimated dimensions of 1502 ± 45 × 1430 ± 9 km.

Estimates of its mass place it in the vicinity of 4 x 10²¹ kg (4,000,000,000 trillion kg), which is the equivalent of 0.00067 Earths. This makes Makemake the third largest known Trans-Neptunian Object (TNOs) – smaller than Pluto and Eris, and slightly larger than Haumea.

Makemake has a slightly eccentric orbit (of 0.159), which ranges from 38.590 AU (5.76 billion km/3.58 billion mi) at perihelion to 52.840 AU ( 7.94 billion km or 4.934 billion miles) at aphelion. It has an orbital period of 309.09 Earth years, and takes about 7.77 Earth hours to complete a single sidereal rotation. This means that a single day on Makemake is less than 8 hours and a single year last as long as 112,897 days.

A selection of dwarf planets, sometimes considered trans-Neptunian objects depending on their interactions with the planet Neptune. Credit: NASA/STSci
A selection of dwarf planets, sometimes considered trans-Neptunian objects depending on their interactions with the planet Neptune. Credit: NASA/STSci

As a classical Kuiper Belt Object, Makemake’s orbit lies far enough from Neptune to remain stable over the age of the Solar System. Unlike plutinos, which can cross Neptune’s orbit, classical KBOs are free from Neptune’s perturbation. Such objects have relatively low eccentricities (below 0.2) and orbit the Sun in much the same way the planets do. Makemake, however, is a member of the “dynamically hot” class of classical KBOs, meaning that it has a high inclination compared to others in its population.

Composition and Surface:

With an estimated mean density of 1.4–3.2 g/cm³, Makemake is believed to be differentiated between an icy surface and a rocky core. Like Pluto and Eris, the surface ice is believed to be composed largely of frozen methane (CH4) and ethane (C2H6). Though evidence exists for traces of nitrogen ice as well, it is nowhere near as prevalent as with Pluto or Triton.

Javier Licandro and his colleagues at the Instituto de Astrofisica de Canarias performed examinations of Makemake using the William Herschel Telescope and Telescopio Nazionale Galileo. According to their findings, Makemake has a very bright surface (with a surface albedo of 0.81) which means it closely resembles that of Pluto.

In essence, it appears reddish in color (significantly more so than Eris), which also indicates strong concentrations of tholins in the surface ice. This is consistent with the presence of methane ice, which would have turned red due to exposure to solar radiation over time.

Atmosphere:

During it’s 2011 occultation with an 18th-magnitutde star, Makemake abruptly blocked all of its light. These results showed that Makemake lacks a substantial atmosphere, which contradicted earlier assumptions about it having an atmosphere comparable to that of Pluto. However, the presence of methane and possibly nitrogen suggests that Makemake could have a transient atmosphere similar to that of Pluto when it reaches perihelion.

Makemake. Credit: NASA
Artist’s impression of the surface of Makemake. Credit: NASA

Essentially, when Makemake is closest to the Sun, nitrogen and other ices would sublimate, forming a tenuous atmosphere composed of nitrogen gas and hydrocarbons. The existence of an atmosphere would also provide a natural explanation for the nitrogen depletion, which could have been lost over time through the process of atmospheric escape.

Moon:

In April of 2016, observations using the Hubble Space Telescope‘s Wide Field Camera 3 revealed that Makemake had a natural satellite – which was designated S/2015 (136472) 1 (nicknamed MK 2 by the discovery team). It is estimated to be 175 km (110 mi) km in diameter and has a semi-major axis at least 21,000 km (13,000 mi) from Makemake.

Exploration:

Currently, no missions have been planned to the Kuiper Belt for the purpose of conducting a survey of Makemake. However, it has been calculated that – based on a launch date of August 21st, 2024, and August 24th, 2036 – a flyby mission to Makemake could take just over 16 years, using a Jupiter gravity assist. On either occasion, Makemake would be approximately 52 AU from the Sun when the spacecraft arrives.

Makemake is now the fourth designated dwarf planet in the solar system, and the third Plutoid. In the coming years, it is likely to be joined several more objects in the Trans-Neptunian region that are similar in size, mass, and orbit. And assuming we mount a flyby to the region, we may discover many similar objects, and learn a great deal more about this one.

We have many interesting articles on Makemake and the Kuiper Belt here at Universe Today. Here’s How Many Planets are in the Solar System, and Makemake’s Mysterious Atmosphere.

Sources:

What is the Oort Cloud?

The layout of the solar system, including the Oort Cloud, on a logarithmic scale. Credit: NASA

For thousands of years, astronomers have watched comets travel close to Earth and light up the night sky. In time, these observations led to a number of paradoxes. For instance, where were these comets all coming from? And if their surface material vaporizes as they approach the Sun (thus forming their famous halos), they must formed farther away, where they would have existed there for most of their lifespans.

In time, these observations led to the theory that far beyond the Sun and planets, there exists a large cloud of icy material and rock where most of these comets come from. This existence of this cloud, which is known as the Oort Cloud (after its principal theoretical founder), remains unproven. But from the many short and long-period comets that are believed to have come from there, astronomers have learned a great deal about it structure and composition.

Definition:

The Oort Cloud is a theoretical spherical cloud of predominantly icy planetesimals that is believed to surround the Sun at a distance of up to around 100,000 AU (2 ly). This places it in interstellar space, beyond the Sun’s Heliosphere where it defines the cosmological boundary between the Solar System and the region of the Sun’s gravitational dominance.

Like the Kuiper Belt and the Scattered Disc, the Oort Cloud is a reservoir of trans-Neptunian objects, though it is over a thousands times more distant from our Sun as these other two. The idea of a cloud of icy infinitesimals was first proposed in 1932 by Estonian astronomer Ernst Öpik, who postulated that long-period comets originated in an orbiting cloud at the outermost edge of the Solar System.

In 1950, the concept was resurrected by Jan Oort, who independently hypothesized its existence to explain the behavior of long-term comets. Although it has not yet been proven through direct observation, the existence of the Oort Cloud is widely accepted in the scientific community.

Structure and Composition:

The Oort Cloud is thought to extend from between 2,000 and 5,000 AU (0.03 and 0.08 ly) to as far as 50,000 AU (0.79 ly) from the Sun, though some estimates place the outer edge as far as 100,000 and 200,000 AU (1.58 and 3.16 ly). The Cloud is thought to be comprised of two regions – a spherical outer Oort Cloud of 20,000 – 50,000 AU (0.32 – 0.79 ly), and disc-shaped inner Oort (or Hills) Cloud of 2,000 – 20,000 AU (0.03 – 0.32 ly).

The outer Oort cloud may have trillions of objects larger than 1 km (0.62 mi), and billions that measure 20 kilometers (12 mi) in diameter. Its total mass is not known, but – assuming that Halley’s Comet is a typical representation of outer Oort Cloud objects – it has the combined mass of roughly 3×1025 kilograms (6.6×1025 pounds), or five Earths.

Based on the analyses of past comets, the vast majority of Oort Cloud objects are composed of icy volatiles – such as water, methane, ethane, carbon monoxide, hydrogen cyanide, and ammonia. The appearance of asteroids thought to be originating from the Oort Cloud has also prompted theoretical research that suggests that the population consists of 1-2% asteroids.

Earlier estimates placed its mass up to 380 Earth masses, but improved knowledge of the size distribution of long-period comets has led to lower estimates. The mass of the inner Oort Cloud, meanwhile, has yet to be characterized. The contents of both Kuiper Belt and the Oort Cloud are known as Trans-Neptunian Objects (TNOs), because the objects of both regions have orbits that that are further from the Sun than Neptune’s orbit.

A belt of comets called the Oort Cloud is theorized to encircle the Solar system (image credit: NASA/JPL).
A belt of comets called the Oort Cloud is theorized to encircle the Solar system (image credit: NASA/JPL).

Origin:

The Oort cloud is thought to be a remnant of the original protoplanetary disc that formed around the Sun approximately 4.6 billion years ago. The most widely accepted hypothesis is that the Oort cloud’s objects initially coalesced much closer to the Sun as part of the same process that formed the planets and minor planets, but that gravitational interaction with young gas giants such as Jupiter ejected them into extremely long elliptic or parabolic orbits.

Recent research by NASA suggests that a large number of Oort cloud objects are the product of an exchange of materials between the Sun and its sibling stars as they formed and drifted apart. It is also suggested that many – possibly the majority – of Oort cloud objects were not formed in close proximity to the Sun.

Alessandro Morbidelli of the Observatoire de la Cote d’Azur has conducted simulations on the evolution of the Oort cloud from the beginnings of the Solar System to the present. These simulations indicate that gravitational interaction with nearby stars and galactic tides modified cometary orbits to make them more circular. This is offered as an explanation for why the outer Oort Cloud is nearly spherical in shape while the Hills cloud, which is bound more strongly to the Sun, has not acquired a spherical shape.

A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz's Star and companion passed along the outer boundaries of our Solar System (Credit: NASA, Michael Osadciw/University of Rochester)
A comparison of the Solar System and its Oort Cloud. 70,000 years ago, Scholz’s Star and companion passed along the outer boundaries of our Solar System. Credit: NASA, Michael Osadciw/University of Rochester

Recent studies have shown that the formation of the Oort cloud is broadly compatible with the hypothesis that the Solar System formed as part of an embedded cluster of 200–400 stars. These early stars likely played a role in the cloud’s formation, since the number of close stellar passages within the cluster was much higher than today, leading to far more frequent perturbations.

Comets:

Comets are thought to have two points of origin within the Solar System. They start as infinitesimals in the Oort Cloud and then become comets when passing stars knock some of them out of their orbits, sending into a long-term orbit that take them into the inner solar system and out again.

Short-period comets have orbits that last up to two hundred years while the orbits of long-period comets can last for thousands of years. Whereas short-period comets are believed to have emerged from either the Kuiper Belt or the scattered disc, the accepted hypothesis is that long-period comets originate in the Oort Cloud. However, there are some exceptions to this rule.

For example, there are two main varieties of short-period comet: Jupiter-family comets and Halley-family comets. Halley-family comets, named for their prototype (Halley’s Comet) are unusual in that although they are short in period, they are believed to have originated from the Oort cloud. Based on their orbits, it is suggested they were once long-period comets that were captured by the gravity of a gas giant and sent into the inner Solar System.

Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA
Evolution of a comet as it orbits the sun. Credit: Laboratory for Atmospheric and Space Sciences/ NASA

Exploration:

Because the Oort Cloud is so much farther out than the Kuiper Belt, the region remained unexplored and largely undocumented. Space probes have yet to reach the area of the Oort cloud, and Voyager 1 – the fastest and farthest of the interplanetary space probes currently exiting the Solar System – is not likely to provide any information on it.

At its current speed, Voyager 1 will reach the Oort cloud in about 300 years, and will will take about 30,000 years to pass through it. However, by around 2025, the probe’s radioisotope thermoelectric generators will no longer supply enough power to operate any of its scientific instruments. The other four probes currently escaping the Solar System – Voyager 2, Pioneer 10 and 11, and New Horizons – will also be non-functional when they reach the Oort cloud.

Exploring the Oort Cloud presents numerous difficulties, most of which arise from the fact that it is incredible distant from Earth. By the time a robotic probe could actually reach it and begin exploring the area in earnest, centuries will have passed here on Earth. Not only would those who had sent it out in the first place be long dead, but humanity will have most likely invented far more sophisticated probes or even manned craft in the meantime.

Still, studies can be (and are) conducted by examining the comets that it periodically spits out, and long-range observatories are likely to make some interesting discoveries from this region of space in the coming years. It’s a big cloud. Who knows what we might find lurking in there?

We have many interesting articles about the Oort Cloud and Solar System for Universe Today. Here’s an article about how big the Solar System is, and one on the diameter of the Solar System. And here’s all you need to know about Halley’s Comet and Beyond Pluto.

You might also want to check out this article from NASA on the Oort Cloud and one from the University of Michigan on the origin of comets.

Do not forget to take a look at the podcast from Astronomy Cast. Episode 64: Pluto and the Icy Outer Solar System and Episode 292: The Oort Cloud.

Reference:
NASA Solar System Exploration: Kuiper Belt & Oort Cloud

New Horizons Mission to Pluto

Humans have been sending spacecraft to other planets, as well as asteroid and comets, for decades. But rarely have any of these ventured into the outer reaches of our Solar System. In fact, the last time a probe reached beyond the orbit of Saturn to explore the worlds of Neptune, Uranus, Pluto and beyond was with the Voyager 2 mission, which concluded back in 1989.

But with the New Horizons mission, humanity is once again peering into the outer Solar System and learning much about its planets, dwarf planets, planetoids, moons and assorted objects. And as of July 14th, 2015, it made its historic rendezvous with Pluto, a world that has continued to surprise and mystify astronomers since it was first discovered.

Background:

In 1980, after Voyager 1‘s flyby of Saturn, NASA scientists began to consider the possibility of using Saturn to slingshot the probe towards Pluto to conduct a flyby by 1986. This would not be the case, as NASA decided instead to conduct a flyby of Saturn’s moon of Titan – which they considered to be a more scientific objective – thus making a slingshot towards Pluto impossible.

Because no mission to Pluto was planned by any space agency at the time, it would be years before any missions to Pluto could be contemplated. However, after Voyager 2′s flyby of Neptune and Triton in 1989, scientists once again began contemplating a mission that would take a spacecraft to Pluto for the sake of studying the Kuiper Belt and Kuiper Belt Objects (KBOs).

Voyager 2. Credit: NASA
Artist’s impression of the Voyager spacecraft in flight. Credit: NASA/JPL

In May 1989, a group of scientists, including Alan Stern and Fran Bagenal, formed an alliance called the “Pluto Underground”. Committed to the idea of mounting an exploratory mission to Pluto and the Kuiper Belt, this group began lobbying NASA and the US government to make it this plan a reality. Combined with pressure from the scientific community at large, NASA began looking into mission concepts by 1990.

During the course of the late 1990s, a number of Trans-Neptunian Objects (TNOs) were discovered, confirming the existence of the Kuiper Belt and spurring interest in a mission to the region. This led NASA to instruct the JPL to re-purpose the mission as a Pluto and KBO flyby. However, the mission was scrapped by 2000, owing to budget constraints.

Backlash over the cancellation led NASA’s Science Mission Directorate to create the New Frontiers program which began accepting mission proposals. Stamatios “Tom” Krimigis, head of the Applied Physics Laboratory’s (APL) space division, came together with Alan Stern to form the New Horizons team. Their proposal was selected from a number of submissions, and officially selected for funding by the New Frontiers program in Nov. 2001.

Despite additional squabbles over funding with the Bush administration, renewed pressure from the scientific community allowed the New Horizons team managed to secure their funding by the summer of 2002. With a commitment of $650 million for the next fourteen years, Stern’s team was finally able to start building the spacecraft and its instruments.

Engineers working on the New Horizons spacecraft's Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA
Engineers working on the New Horizons spacecraft’s Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument. Credit: NASA

Mission Profile:

New Horizons was planned as a voyage to the only unexplored planet in the Solar System, and was originally slated for launch in January 2006 and arrival at Pluto in 2015. Alan Stern was selected as the mission’s principal investigator, and construction of the spacecraft was handled primarily by the Southwest Research Institute (SwRI) and the Johns Hopkins Applied Physics Laboratory, with various contractor facilities involved in the navigation of the spacecraft.

Meanwhile, the US Naval Observatory (USNO) Flagstaff Station – in conjunction with NASA and JPL – was responsible for performing navigational position data and related celestial frames. Coincidentally, the UNSO Flagstaff station was where the photographic plates that led to the discovery of Pluto’s moon Charon came from.

In addition to its compliment of scientific instruments (listed below), there are several cultural artifacts traveling aboard the spacecraft. These include a collection of 434,738 names stored on a compact disc, a piece of Scaled Composites’s SpaceShipOne, and a flag of the USA, along with other mementos. In addition, about 30 g (1 oz) of Clyde Tombaugh’s ashes are aboard the spacecraft, to commemorate his discovery of Pluto in 1930.

The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA
The New Horizons spacecraft takes off on Jan. 19, 2006 from the Kennedy Space Center for its planned close encounter with Pluto. Credit: NIKON/Scott Andrews/NASA

Instrumentation:

The New Horizons science payload consists of seven instruments. They are (in alphabetically order):

  • Alice: An ultraviolet imaging spectrometer responsible for analyzing composition and structure of Pluto’s atmosphere and looks for atmospheres around Charon and Kuiper Belt Objects (KBOs).
  • LORRI: (Long Range Reconnaissance Imager) a telescopic camera that obtains encounter data at long distances, maps Pluto’s farside and provides high resolution geologic data.
  • PEPSSI: (Pluto Energetic Particle Spectrometer Science Investigation) an energetic particle spectrometer which measures the composition and density of plasma (ions) escaping from Pluto’s atmosphere.
  • Ralph: A visible and infrared imager/spectrometer that provides color, composition and thermal maps.
  • REX: (Radio Science EXperiment) a device that measures atmospheric composition and temperature; passive radiometer.
  • SDC: (Student Dust Counter) built and operated by students, this instrument measures the space dust peppering New Horizons during its voyage across the solar system.
  • SWAP: (Solar Wind Around Pluto) a solar wind and plasma spectrometer that measures atmospheric “escape rate” and observes Pluto’s interaction with solar wind.
Instruments New Horizons will use to characterize Pluto are REX (atmospheric composition and temperature; PEPSSI (composition of plasma escaping Pluto's atmosphere); SWAP (solar wind); LORRI (close up camera for mapping, geological data); Star Dust Counter (student experiment measuring space dust during the voyage); Ralph (visible and IR imager/spectrometer for surface composition and thermal maps and Alice (composition of atmosphere and search for atmosphere around Charon). Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute
The instruments New Horizons will use to characterize Pluto. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Launch:

Due to a series of weather-related delays, the New Horizons mission launched on January 19th, 2006, two days later than originally scheduled. The spacecraft took off from Cape Canaveral Air Force Station, Florida, at 15:00 EST (19:00 UTC) atop an Atlas V 551 rocket. This was the first launch of this particular rocket configuration, which has a third stage added to increase the heliocentric (escape) speed.

The spacecraft left Earth faster than any spacecraft to date, achieving a launch velocity of 16.5 km/s. It took only nine hours to reach the Moon’s orbit, passing lunar orbit before midnight (EST) on the same day it was launched. It has not, however, broken Voyager 1‘s record – which is currently traveling at 17.145 km/s (61,720 km/h, 38,350 mph) relative to the Sun – for being the fastest spacecraft to leave the Solar System.

Inner Solar System:

Between January and March, 2006, mission controllers guided the probe through a series of trajectory-correction maneuvers (TCMs). During the week of February 20th, 2006, controllers conducted in-flight tests on three of the major on board science instruments. On April 7th, the spacecraft passed the orbit of Mars, moving at roughly 21 km/s (76,000 km/h; 47,000 mph) away from the Sun.

At this point in its journey, the spacecraft had reached a distance of 243 million kilometers from the Sun, and approximately 93.4 million km from Earth. On June 13th, 2006, the New Horizons spacecraft passed the tiny asteroid 132524 APL at a distance of 101,867 km (63,297 mi) when it was closest.

Using the Ralph instrument, New Horizons was able to capture images of the asteroid, estimating to be 2.5 km (1.6 mi) in diameter. The spacecraft also successfully tracked the asteroid from June 10th-12th, 2006, allowing the mission team to test the spacecraft’s ability to track rapidly moving objects.

First images of Pluto in September 2006. Credit: NASA
First images of Pluto taken by New Horizons in September 2006. Credit: NASA

From September 21st-24th, New Horizons managed to capture its first images of Pluto while testing the LORRI instruments. These images, which were taken from a distance of approximately 4,200,000,000 km (2.6×109 mi) or 28.07 AU and released on November 28th, confirmed the spacecraft’s ability to track distant targets.

Outer Solar System:

On September 4th, 2006, New Horizons took its first pictures of Jupiter at a distance of 291 million kilometers (181 million miles). The following January, it conducted more detailed surveys of the system, capturing an infrared image of the moon Callisto, and several black and white images of Jupiter itself.

By February 28th, 2007, at 23:17 EST (03:17, UTC) New Horizons made its closest approach to Europa, at a distance of 2,964,860 km (1,842,278 mi). At 01:53:40 EST (05:43:40 UTC), the spacecraft made its flyby of Jupiter, at a distance of 2.3 million km (1.4 million mi) and received a gravity assist.

The Jupiter flyby increased New Horizons‘ speed by 4 km/s (14,000 km/h; 9,000 mph), accelerating the probe to a velocity of 23 km/s (83,000 km/h; 51,000 mph) relative to the Sun and shortening its voyage to Pluto by three years.

The encounter with Jupiter not only provided NASA with the opportunity to photograph the planet using the latest equipment, it also served as a dress rehearsal for the spacecraft’s encounter with Pluto. As well as testing the imaging instruments, it also allowed the mission team to test the communications link and the spacecraft’s memory buffer.

Black and white image of Jupiter viewed by LORRI in January 2007
Black and white image of Jupiter viewed by LORRI in January 2007. Credit: NASA/John Hopkins University Applied Physics Laboratory/Southwest Research Institute

One of the main goals during the Jupiter encounter was observing its atmospheric conditions and analyzing the structure and composition of its clouds. Heat-induced lightning strikes in the polar regions and evidence of violent storm activity were both observed. In addition, the Little Red Spot,  was imaged from up close for the first time. The New Horizons spacecraft also took detailed images of Jupiter’s faint ring system. Traveling through Jupiter’s magnetosphere, the spacecraft also managed to collect valuable particle readings.

The flyby of the Jovian systems also gave scientists the opportunity to examine the structure and motion of Io’s famous lava plumes. New Horizons measured the plumes coming from the Tvashtar volcano, which reached an altitude of up to 330 km from the surface, while infrared signatures confirmed the presence of 36 more volcanoes on the moon.

Callisto’s surface was also analyzed with LEISA, revealing how lighting and viewing conditions affect infrared spectrum readings of its surface water ice. Data gathered on minor moons such as Amalthea also allowed NASA scientists to refine their orbit solutions.

After passing Jupiter, New Horizons spent most of its journey towards Pluto in hibernation mode. During this time, New Horizons crossed the orbit of Saturn (June 8, 2008) and Uranus on (March 18, 2011). In June 2014, the spacecraft emerged from hibernation and the team began conducting instrument calibrations and a course correction,. By August 24th, 2014, it crossed Neptune’s orbit on its way to Pluto.

Capturing Callisto
New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter’s outermost large moon, Callisto, during its flyby in February 2007. Credit: NASA/JPL

Rendezvous with Pluto:

Distant-encounter operations at Pluto began on January 4th, 2015. Between January 25th to 31st, the approaching probe took several images of Pluto, which were released by NASA on February 12th. These photos, which were taken at a distance of more than 203,000,000 km (126,000,000 mi) showed Pluto and its largest moon, Charon.

Investigators compiled a series of images of the moons Nix and Hydra taken from January 27th through February 8th, 2015, beginning at a range of 201,000,000 km (125,000,000 mi), while Kerberos and Styx were captured by photos taken on April 25.

On July 4th, 2015, NASA lost contact with New Horizons after it experienced a software anomaly and went into safe mode. On the following day, NASA announced that they had determined it to be the result of a timing flaw in a command sequence. By July 6th, the glitch had been fixed and the probe had exited safe mode and began making its approach.

The New Horizons spacecraft made its closest approach to Pluto at 07:49:57 EDT (11:49:57 UTC) on July 14th, 2015, and then Charon at 08:03:50 EDT (12:03:50 UTC). Telemetries confirming a successful flyby and a healthy spacecraft reached Earth on 20:52:37 EDT (00:52:37 UTC).

During the flyby, the probe captured the clearest pictures of Pluto to date, and full analyses of the data obtained is expected to take years to process. The spacecraft is currently traveling at a speed of 14.52 km/s (9.02 mi/s) relative to the Sun and at 13.77 km/s (8.56 mi/s) relative to Pluto.

Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu
Full trajectory of New Horizons space probe (sideview). Credit: pluto.jhuapl.edu

Future Objectives:

With its flyby of Pluto now complete, the New Horizons probe is now on its way towards the Kuiper Belt. The goal here is to study one or two other Kuiper Belt Objects, provided suitable KBOs are close to New Horizons‘ flight path.

Three objects have since been selected as potential targets, which were provisionally designated PT1 (“potential target 1”), PT2 and PT3 by the New Horizons team. These have since been re-designated as 2014 MU69 (PT1), 2014 OS393 (PT2), and 2014 PN70 (PT3).

All of these objects have an estimated diameter of 30–55 km, are too small to be seen by ground telescopes, and are 43–44 AU from the Sun, which would put the encounters in the 2018–2019 period. All are members of the “cold” (low-inclination, low-eccentricity) classical Kuiper Belt, and thus very different from Pluto.

Even though it was launched far faster than any outward probe before it, New Horizons will never overtake either Voyager 1 or Voyager 2 as the most distant human-made object from Earth. But then again, it doesn’t need to, given that what it was sent out to study all lies closer to home.

What’s more, the probe has provided astronomers with extensive and updated data on many of planets and moons in our Solar System – not the least of which are the Jovian and Plutonian systems. And last, but certainly not least, New Horizons is the first spacecraft to have it made it out to such a distance since the Voyager program.

And so we say so long and good luck to New Horizons, not to mention thanks for providing us with the best images of Pluto anyone has ever seen! We can only hope she fares well as she makes its way into the Kuiper Belt and advances our knowledge of the outer Solar System even farther.

We have many interesting articles about the New Horizons spacecraft and Pluto here on Universe Today. For example, here are some Interesting Facts About PlutoHow Long Does it Take to Get to Pluto, Why Pluto is No Longer Considered a Planet, and Is There Life on Pluto?

For more information on the Kuiper Belt, check out What is The Kuiper Belt? and NASA’s Solar System Exploration entry on the Kuiper Belt and Oort Cloud.

Astronomy Cast also has some fascinating episodes on Pluto, including On Pluto’s Doorstep – Live Hangout with New Horizons Team

And be sure to check out the New Horizons mission homepage at NASA.

Astronomers are Predicting at Least Two More Large Planets in the Solar System

Could there be another Pluto-like object out in the far reaches of the Solar System? How about two or more?

Earlier this week, we discussed a recent paper from planet-hunter Mike Brown, who said that while there aren’t likely to be any bright, easy-to-find objects, there could be dark ones “lurking far away.” Now, a group of astronomers from the UK and Spain maintain at least two planets must exist beyond Neptune and Pluto in order to explain the orbital behavior of objects that are even farther out, called extreme trans-Neptunian objects (ETNO).

The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)
The presently known largest small bodies in the Kuiper Belt are likely not to be surpassed by any future discoveries. This is the conclusion of Dr. Michael Brown, et al. (Illustration Credit: Larry McNish, Data: M.Brown)

We do know that Pluto shares its region Solar System with more than 1500 other tiny, icy worlds along with likely countless smaller and darker ones that have not yet been detected.

In two new paper published this week, scientists at the Complutense University of Madrid and the University of Cambridge noted that the most accepted theory of trans-Neptunian objects is that they should orbit at a distance of about 150 AU, be in an orbital plane – or inclination – similar to the planets in our Solar System, and they should be randomly distributed.

But that differs from what is actually observed. What astronomers see are groupings of objects with widely disperse distances (between 150 AU and 525 AU) and orbital inclinations that vary between 0 to 20 degrees.

“This excess of objects with unexpected orbital parameters makes us believe that some invisible forces are altering the distribution of the orbital elements of the ETNO,” said Carlos de la Fuente Marcos, scientist at UCM and co-author of the study, “ and we consider that the most probable explanation is that other unknown planets exist beyond Neptune and Pluto.”

He added that the exact number is uncertain, but given the limited data that is available, their calculations suggest “there are at least two planets, and probably more, within the confines of our solar system.”

In their studies, the team analyzed the effects of what is called the ‘Kozai mechanism,’ which is related to the gravitational perturbation that a large body exerts on the orbit of another much smaller and further away object. They looked at how the highly eccentric comet 96P/Machholz1 is influenced by Jupiter (it will come near the orbit of Mercury in 2017, but it travels as much as 6 AU at aphelion) and it may “provide the key to explain the puzzling clustering of orbits around argument of perihelion close to 0° recently found for the population of ETNOs,” the team wrote in one of their papers.

The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth's perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science
The discovery images of 2012 VP113. Each one was taken about two hours apart on Nov. 5, 2012. Behind the object, you can see background stars and galaxies that remained still (from Earth’s perspective) in the picture frame. Credit: Scott S. Sheppard: Carnegie Institution for Science

They also looked at the dwarf planet discovered last year called 2012 VP113 in the Oort cloud (its closest approach to the Sun is about 80 astronomical units) and how some researchers say it appears its orbit might be influenced by the possible presence of a dark and icy super-Earth, up to ten times larger than our planet.

“This Sedna-like object has the most distant perihelion of any known minor planet and the value of its argument of perihelion is close to 0°,” the team writes in their second paper. “This property appears to be shared by almost all known asteroids with semimajor axis greater than 150 au and perihelion greater than 30 au (the extreme trans-Neptunian objects or ETNOs), and this fact has been interpreted as evidence for the existence of a super-Earth at 250 au. In this scenario, a population of stable asteroids may be shepherded by a distant, undiscovered planet larger than the Earth that keeps the value of their argument of perihelion librating around 0° as a result of the Kozai mechanism.”

Of course, the theory put forth in two papers published by the team goes against the predictions of current models on the formation of the Solar System, which state that there are no other planets moving in circular orbits beyond Neptune.

But the team pointed to the recent discovery of a planet-forming disk around the star HL Tauri that lies more than 100 astronomical units from the star. HL Tauri is more massive and younger than our Sun and the discovery suggests that planets can form several hundred astronomical units away from the center of the system.

The team based their analysis by studying 13 different objects, so what is needed is more observations of the outer regions of our Solar System to determine what might be hiding out there.

Further reading:
Carlos de la Fuente Marcos, Raúl de la Fuente Marcos, Sverre J. Aarseth. “Flipping minor bodies: what comet 96P/Machholz 1 can tell us about the orbital evolution of extreme trans-Neptunian objects and the production of near-Earth objects on retrograde orbits”. Monthly Notices of the Royal Astronomical Society 446(2):1867-1873, 2015.

C. de la Fuente Marcos, R. de la Fuente Marcos. “Extreme trans-Neptunian objects and the Kozai mechanism: signalling the presence of trans-Plutonian planets? Monthly Notices of the Royal Astronomical Society Letters 443(1): L59-L63, 2014.

SiNC press release

Mysterious and Well-Preserved Oort Cloud Object Heading Into Our Solar System

What if we could journey to the outer edge of the Solar System – beyond the familiar rocky planets and the gas giants, past the orbits of asteroids and comets – one thousand times further still – to the spherical shell of icy particles that enshrouds the Solar System. This shell, more commonly known as the Oort cloud, is believed to be a remnant of the early Solar System.

Imagine what astronomers could learn about the early Solar System by sending a probe to the Oort cloud! Unfortunately 1-2 light years is more than a little beyond our reach. But we’re not entirely out of luck. 2010 WG9 – a trans-Neptunian object — is actually an Oort Cloud object in disguise. It has been kicked out of its orbit, and is heading closer towards us so we can get an unprecedented look.

But it gets even better! 2010 WG9 won’t get close to the Sun, meaning that its icy surface will remain well-preserved. Dr. David Rabinowitz, lead author of a paper about the ongoing observations of this object told Universe Today, “This is one of the Holy Grails of Planetary Science – to observe an unaltered planetesimal left over from the time of Solar System formation.”

Now you might be thinking: wait, don’t comets come from the Oort Cloud? It’s true; most comets were pulled out of the Oort cloud by a gravitational disturbance. But observing comets is extremely difficult, as they are surrounded by bright clouds of dust and gas. They also come much closer to the Sun, meaning that their ices evaporate and their original surface is not preserved.

So while there is a surprisingly high number of Oort cloud objects hanging out within the inner solar system, we needed to find one that is easy to observe and whose surface is well preserved. 2010 WG9 is just the object for the job! It is not covered by dust or gas, and is believed to have spent most of its lifetime at distances greater than 1000 AU. In fact, it will never approach closer than Uranus.

Astronomers at Yale University have observed 2010 WG9 for over two years, taking images in different filters. Just as coffee filters allow ground coffee to pass through but will block larger coffee beans, astronomical filters allow certain wavelengths of light to pass through, while blocking all others.

Recall that the wavelength of visible light relates to color. The color red, for example, has a wavelength of approximately 650 nm. An object that is very red will therefore be brighter in a filter of this wavelength, as opposed to a filter of, say, 475 nm, or blue. The use of filters allow astronomers to study specific colors of light.

Astronomers observed 2010 WG9 with four filters: B, V, R, and I, also known as blue, visible, red, and infrared wavelengths. What did they see? Variation – a change in color over the course of just days.

The likely source is a patchy surface. Imagine looking at the Earth (pretend there’s no atmosphere) with a blue filter. It would brighten when an ocean came into view, and dim when that ocean left the field of view. There would be a variation in color, dependent on the different elements located on the surface of the planet.

The dwarf planet Pluto has patches of methane ice, which also show up as color variations on its surface. Unlike Pluto, 2010 WG9 is relatively small (100 km in diameter) and cannot hold on to its methane ice. It’s possible that part of the surface is newly exposed after an impact. According to Rabinowitz, astronomers are still unsure what the color variations mean.

Rabinowitz was very keen to explain that 2010 WG9 has an unusually slow rotation. Most trans-Neptunian objects rotate every few hours. 2010 WG9 rotates on the order of 11 days! The best reason for this discrepancy is that it exists in a binary system. If 2010 WG9 is tidally locked to another body — meaning that the spin of each body is locked to the rate of rotation — then 2010 WG9 will be slowed down in its rotation.

According to Rabinowitz, the next step will be to observe 2010 WG9 with larger telescopes — perhaps the Hubble Space Telescope — in order to better measure the color variation. We may even be able to determine if this object is in a binary system after all, and observe the secondary object as well.

Any future observations will help us further understand the Oort cloud. “Very little is known about the Oort cloud – how many objects are in it, what are its dimensions, and how it formed,” Rabinowitz explained.  “By studying the detailed properties of a newly arrived member of the Oort cloud, we may learn about its constituents.”

2010 WG9 will likely hint at the origin of the Solar System in helping us further understand its own origin: the mysterious Oort cloud.

Source: Rabinowitz, et al. AJ, 2013

Astronomers Find 14 New Trans-Neptunian Objects Hiding in Hubble Data

[/caption]

Out beyond the orbit of Neptune lurk millions of icy bodies called Trans-Neptunian Objects. We haven’t found and seen them them all yet, but astronomers have theorized the numbers. However, since 1992, nearly a thousand TNOs have been observed. Most of them are very small and receive little sunlight, which makes them faint and difficult to spot. But a group of astronomers have devised a clever new technique to find TNOs and discovered 14 just by using archived data from the Hubble Space Telescope, and they hope to be able to uncover hundreds more.

“Trans-Neptunian objects interest us because they are building blocks left over from the formation of the solar system,” said lead author Cesar Fuentes.

As TNOs slowly orbit the sun, they move against the starry background, appearing as streaks of light in time exposure photographs. The team developed software to analyze hundreds of Hubble images hunting for such streaks. After promising candidates were flagged, the images were visually examined to confirm or refute each discovery.

Most TNOs are located near the ecliptic — a line in the sky marking the plane of the solar system (since the solar system formed from a disk of material). Therefore, the team searched within 5 degrees of the ecliptic to increase their chance of success.

The 14 objects include one binary system, kind of like a mini Pluto-Charon system. All were very faint, with most measuring magnitude 25-27 (more than 100 million times fainter than objects visible to the unaided eye).

Additionally, by measuring their motion across the sky, astronomers were able to calculate the orbit and distance for each object. Combining the distance and brightness (plus an assumed albedo or reflectivity), they then estimated the size. The newfound TNOs range from 25 to 60 miles (40-100 km) across.

Unlike planets, which tend to have very flat orbits (known as low inclination), some TNOs have orbits significantly tilted from the ecliptic (high inclination). The team examined the size distribution of TNOs with low- versus high-inclination orbits to gain clues about how the population has evolved over the past 4.5 billion years.

Generally, smaller trans-Neptunian objects are the shattered remains of bigger TNOs. Over billions of years, these objects smack together, grinding each other down. The team found that the size distribution of TNOs with low- versus high-inclination orbits is about the same as objects get fainter and smaller. Therefore, both populations (low and high inclination) have similar collisional histories.

This initial study examined only one-third of a square degree of the sky, meaning that there is much more area to survey. Hundreds of additional TNOs may be hiding in the Hubble archives at higher ecliptic latitudes. Fuentes and his colleagues intend to continue their search.

“We have proven our ability to detect and characterize TNOs even with data intended for completely different purposes,” Fuentes said.

This research has been accepted for publication in The Astrophysical Journal.

Read the team’s abstract.

Source: CfA

Astronomy Without A Telescope – Coloring In The Oort Cloud

[/caption]

It’s possible that if we do eventually observe the hypothetical objects that make up the hypothetical Oort cloud, they will all be a deep red color. This red coloring will probably be a mix of ices, richly laced with organic compounds – and may represent remnants of the primordial material from which the solar system was formed.

Furthermore, the wide range of colors found across different classes of trans-Neptunian objects may help to determine their origins.

The current observable classes of trans-Neptunian objects includes Pluto and similar objects called plutinos, which are caught in a 2:3 orbital resonance with Neptune towards the inner edge of the Kuiper belt. There are other Kuiper belt objects caught in a range of different resonant orbital ratios, including two-tinos – which are caught in a 1:2 resonance with Neptune – and which are found towards the outer edge of the Kuiper belt.

Otherwise, the majority of Kuiper belt objects (KBOs) are cubewanos (named after the first one discovered called QB1), which are also known as ‘classical’ KBOs. These are not obviously in orbital resonance with Neptune and their solar orbits are relatively circular and well outside Neptune’s orbit. There are two fairly distinct populations of cubewanos – those which have little inclination and those which are tilted more than 12 degrees away from the mean orbital plane of the solar system.

Beyond the Kuiper belt is the scattered disk – which contains objects with very eccentric elliptical orbits. So, although it may take hundreds of years for them to get there, the perihelions of many of these objects’ orbits are much closer to the Sun – suggesting this region is the main source of short period comets.

The trans-Neptunian landscape. Classical Kuiper belt objects have relatively circular orbits that never stray within the orbit of Neptune (yellow circle) - while plutinos and scattered disk objects have eccentric orbits that may. Classical objects with low inclinations (see ecliptic view) tend to have the deepest red coloration. Objects with higher inclination - and those with eccentric solar orbits which take them closer to the Sun - appear faded.

Now, there are an awful lot of trans-Neptunian objects out there and not all of them have been observed in detail, but surveys to date suggest the following trends:

  • Cubewanos with little inclination or eccentricity are a deep red color; and
  • Plutinos, scattered disk objects and highly inclined cubewanos are much less red.

Beyond the scattered disk are detached objects, that are clearly detached from the influence of the major planets. The best known example is Sedna – which is… yep, deep red (or ultra-red as the boffins prefer to say).

Sedna and other extreme outer trans-Neptunian objects are sometimes speculatively referred to as inner Oort cloud objects. So if we are willingly to assume that a few meager data points are representative of a wider (and hypothetical) population of Oort cloud objects – then maybe, like Sedna, they are all a deep red color.

And, looking back the other way, the ‘much less red’ color of highly inclined and highly eccentric trans-Neptunian objects is consistent with the color of comets, Centaurs (comets yet to be) and damocloids (comets that once were).

On this basis, it’s tempting to suggest that deep red is the color of primordial solar system material, but it’s a color that fades when exposed to moderate sunlight – something that seems to happen to objects that stray further inward than Neptune’s orbit. So maybe all those faded objects with inclined orbits used to exist much nearer to the Sun, but were flung outward during the early planetary migration maneuvers of the gas giants.

And the primordial red stuff? Maybe it’s frozen tholins – nitrogen-rich organic compounds produced by the irradiation of nitrogen and methane. And if this primordial red stuff has never been irradiated by our Sun, maybe it’s a remnant of the glowing dust cloud that was once our Sun’s stellar nursery.

Ah, what stories we can weave with scant data.

Further reading: Sheppard, S.S. The colors of extreme outer solar system objects.