What Was Here Before the Solar System?

The Solar System is 4.5 billion years old, but the Universe is much older. What was here before our Solar System formed?

The Solar System is old. Like, dial-up-fax-machine-old. 4.6 billion years to be specific. The Solar System has nothing on the Universe. It’s been around for 13.8 billion years, give or take a few hundred million. That means the Universe is three times older than the Solar System.

Astronomers think the Milky Way, is about 13.2 billion years old; almost as old as the Universe itself. It formed when smaller dwarf galaxies merged together to create the grand spiral we know today. It turns out the Milky Way has about 8.6 billion years of unaccounted time. Billions and billions of years to get up to all kinds of mischief before the Solar System showed up to keep an eye on things.

Our Galaxy takes 220 million years to rotate, so it’s done this about 60 times in total. As it turns, it swirls and mixes material together like a giant space blender. Clouds of gas and dust come together into vast star forming regions, massive stars have gone supernova, and then the clusters themselves have been torn up again, churning the stars into the Milky Way. This happens in the galaxy’s spiral arms, where the areas of higher density lead to regions of star formation.

So let’s go back, more than 4.6 billion years, before there was an Earth, a Sun, or even a Solar System. Our entire region was gas and dust, probably within one of the spiral arms. Want to know what it looked like? Some of your favorite pictures from the Hubble Space Telescope should help.

Here’s the Orion, Eagle, and the Tarantula Nebulae. These are star forming regions. They’re clouds of hydrogen left over from Big Bang, with dust expended by aging stars, and seeded with heavier elements formed by supernovae.

Astrophoto: The Orion Nebula by Vasco Soeiro
The Orion Nebula. Image Credit: Vasco Soeiro

After a few million years, regions of higher density began forming into stars, both large and small. Let’s take a look at a star-forming nebula again. See the dark knots? Those are newly forming stars surrounded by gas and dust in the stellar nursery.

You’re seeing many many stars, some are enormous monsters, others are more like our Sun, and some smaller red dwarfs. Most will eventually have planets surrounding them – and maybe, eventually life? If this was the environment, where are all those other stars?

Why do I feel so alone? Where are all our brothers and sisters? Where’s all the other stuff that’s in that picture? Where’s all my stuff?

TRAPPIST First Light Image of the Tarantula Nebula.  Credit:  ESO
TRAPPIST First Light Image of the Tarantula Nebula. Credit: ESO

Apparently nature hates a messy room and a cozy stellar nest. The nebula that made the Sun was either absorbed into the stars, or blown away by the powerful stellar winds from the largest stars. Eventually they cleared out the nebula, like a fans blowing out a smoky room.

At the earliest point, our solar nebula looked like the Eagle Nebula, after millions of years, it was more like the Pleiades Star Cluster, with bright stars surrounded by hazy nebulosity. It was the gravitational forces of the Milky Way which tore the members of our solar nursery into a structure like the Hyades Cluster. Finally, gravitational interactions tore our cluster apart, so our sibling stars were lost forever in the churning arms of the Milky Way.

We’ll never know exactly what was here before the Solar System; that evidence has long been blown away into space. But we can see other places in the Milky Way that give us a rough idea of what it might have looked like at various stages in its evolution.

What should we call our original star forming nebula? Give our own nebula a name in the comments below.

Star Clusters on a Clandestine Collision Course

Astronomers originally thought that just one massive star cluster shone brightly in a huge star forming region of the Tarantula Nebula, also known as 30 Doradus. But closer analysis using data from the Hubble Space Telescope shows that it is actually two different clusters that are just starting to collide and merge. A team of astronomers led by Elena Sabbi of the Space Telescope Science Institute noticed that different stars in the same region were of different ages, by at least one million years. Besides the age differences, the scientists also noticed two distinct regions, with one having the elongated “look” of a merging cluster.

“Stars are supposed to form in clusters,” said Sabbi, “but there are many young stars outside 30 Doradus that could not have formed where they are; they may have been ejected at very high velocity from 30 Doradus itself.”


Sabbi and her team were initially looking for runaway stars — fast-moving stars that have been kicked out of their stellar nurseries where they first formed.

But they noticed something unusual about the cluster when looking at the distribution of the low-mass stars detected by Hubble. It is not spherical, as was expected, but has features somewhat similar to the shape of two merging galaxies where their shapes are elongated by the tidal pull of gravity.

Some models predict that giant gas clouds out of which star clusters form may fragment into smaller pieces. Once these small pieces precipitate stars, they might then interact and merge to become a bigger system. This interaction is what Sabbi and her team think they are observing in 30 Doradus.

There are also an unusually large number of runaway, high-velocity stars around 30 Doradus, and after looking more closely at the clusters, the astronomers believe that these runaway stars were expelled from the core of 30 Doradus as the result of the dynamical interactions between the two star clusters. These interactions are very common during a process called core collapse, in which more-massive stars sink to the center of a cluster by dynamical interactions with lower-mass stars. When many massive stars have reached the core, the core becomes unstable and these massive stars start ejecting each other from the cluster.

The big cluster R136 in the center of the 30 Doradus region is too young to have already experienced a core collapse. However, since in smaller systems the core collapse is much faster, the large number of runaway stars that has been found in the 30 Doradus region can be better explained if a small cluster has merged into R136.

The entire 30 Doradus complex has been an active star-forming region for 25 million years, and it is currently unknown how much longer this region can continue creating new stars. Smaller systems that merge into larger ones could help to explain the origin of some of the largest known star clusters, Sabbi and her team said.

Follow-up studies will look at the area in more detail and on a larger scale to see if any more clusters might be interacting with the ones observed. In particular the infrared sensitivity of NASA’s planned James Webb Space Telescope (JWST) will allow astronomers to look deep into the regions of the Tarantula Nebula that are obscured in visible-light photographs. In these areas cooler and dimmer stars are hidden from view inside cocoons of dust. Webb will better reveal the underlying population of stars in the nebula.

The 30 Doradus Nebula is particularly interesting to astronomers because it is a good example of how star-forming regions in the young universe may have looked. This discovery could help scientists understand the details of cluster formation and how stars formed in the early Universe.

Science Paper by: E. Sabbi, et al. (ApJL, 2012) (PDF document)

Source: HubbleSite

Ambitious Survey Spots Stellar Nurseries

[/caption]

ESO’s VISTA telescope has begun a new survey of the Magellanic Cloud, and this spectacular image of the Tarantula Nebula is a taste of great things to come from this near-infrared scan of the more interesting galaxies in our neighborhood. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. “This view is of one of the most important regions of star formation in the local Universe — the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula,” said the leader of the survey team, Maria-Rosa Cioni from the University of Hertfordshire. “At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located.”

VISTA is a new survey telescope at the Paranal Observatory in Chile, and is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light, fortunately, it can pass through much of the dust that would normally obscure the views that our eyes can see. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot.
The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA.

This project will scan a vast area — 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighboring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system.

“The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbor a rich population of young and massive stars,” said Chris Evans who is part of the VMC team. “Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region.”

The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 — nicknamed the “Ghost Head Nebula” — and the NGC 2083 star cluster.

See more images, zoomable images, and movies of the Tarantula Nebula at the ESO website.

Runaway Star Needs Its Own Reality Docu-Drama

[/caption]

In an astronomical version of “Biggest Loser” meets “Survivor,” a heavy weight star has been kicked out of its stellar nursery. This huge runaway star is rushing away from its birthplace at more than 402,336 kilometers per hour (250,000 miles an hour), and it likely was ejected by a group of even larger sibling stars. The future outlook for this tough-luck star seemingly doesn’t improve: Paul Crowther of the University of Sheffield, a member of the team who made the observations of 30 Dor #016, said the wayward star will continue to streak across space and will eventually end its life in a titanic supernova explosion, likely leaving behind a remnant black hole. There’s a new reality series in there somewhere!


The star on the run is found 375 light-years from its suspected home, a giant star cluster called R136 in 30 Doradus, also called the Tarantula Nebula, about roughly 170,000 light-years from Earth. R136 contains several stars topping 100 solar masses each. 30 Dor #016 is 90 times more massive than our Sun.

Astronomers say runaway stars can be made in a couple of ways: a star may encounter one or two heavier siblings in a massive, dense cluster and get booted out through a stellar game of pinball. Or, a star may get a ‘kick’ from a supernova explosion in a binary system, with the more massive star exploding first.

“It is generally accepted, however, that R136 is sufficiently young, 1 million to 2 million years old, that the cluster’s most massive stars have not yet exploded as supernovae,” says COS team member Danny Lennon of the Space Telescope Science Institute. “This implies that the star must have been ejected through dynamical interaction.”

30 Dor with 30 Dor #16 in the inset. Image credits: : NASA, ESA, J. Walsh (ST-ECF), and ESO

The renegade star may not be the only runaway in the region. Two other extremely hot, massive stars have been spotted beyond the edges of 30 Doradus. Astronomers suspect that these stars, too, may have been ejected from their home. They plan to analyze the stars in detail to determine whether 30 Doradus might be unleashing a barrage of massive stellar runaways into the surrounding neighborhood.

The observations came from a team-effort using Hubble’s newly installed Cosmic Origins Spectrograph (COS) to take an image of the region in 2009, an optical image of the star taken by the Wide Field Planetary Camera 2 in 1995, and another spectroscopic study from the European Southern Observatory’s Very Large Telescope (VLT) at the Paranal Observatory. It was first observed in 2006 when a team led by Ian Howarth of University College London spotted it with the Anglo-Australian Telescope at Siding Spring Observatory.

COS’s ultraviolet spectroscopic observations showed that the wayward star is unleashing a fury of charged particles in one of the most powerful stellar winds known, a clear sign that it is extremely massive, perhaps as much as 90 times heavier than the Sun. The star, therefore, also must be very young, about 1 million to 2 million years old, because extremely massive stars live only a few million years.

The VLT observations revealed that the star’s velocity is constant and not a result of orbital motion in a binary system. Its velocity corresponds to an unusual motion relative to the star’s surroundings, evidence that it is a runaway star.

The study also confirmed that the light from the runaway is from a single massive star rather than the combined light of two lower-mass stars. In addition, the observation established that the star is about 10 times hotter than the Sun, a temperature that is consistent with a high-mass object.

“These results are of great interest because such dynamical processes in very dense, massive clusters have been predicted theoretically for some time, but this is the first direct observation of the process in such a region,” says Nolan Walborn of the Space Telescope Science Institute in Baltimore and a member of the COS team that observed the misfit star. “Less massive runaway stars from the much smaller Orion Nebula Cluster were first found over half a century ago, but this is the first potential confirmation of more recent predictions applying to the most massive young clusters.”

The research team, led by Chris Evans of the Royal Observatory Edinburgh, published the study’s results May 5 in the online edition of The Astrophysical Journal Letters.

Science paper by Evans, et al. 2010

Source: HubbleSite