Dense Gas Clouds Blot The View Of Supermassive Black Holes

A supermassive black hole has been found in an unusual spot: an isolated region of space where only small, dim galaxies reside. Image credit: NASA/JPL-Caltech
A team of astronomers from South Africa have noticed a series of supermassive black holes in distant galaxies that are all spinning in the same direction. Credit: NASA/JPL-Caltech

Gas around supermassive black holes tends to clump into immense clouds, periodically blocking the view of these huge X-ray sources from Earth, new research reveals.

Observations of 55 of these “galactic nuclei” revealed at least a dozen times when an X-ray source dimmed for a time as short as a few hours or as long as years, which likely happened when a gas cloud blotted out the signal seen from Earth. This is different than some previous models suggesting the gas was more uniform.

“Evidence for the clouds comes from records collected over 16 years by NASA’s Rossi X-ray Timing Explorer, a satellite in low-earth orbit equipped with instruments that measured variations in X-ray sources,” stated the Royal Astronomical Society.

“Those sources include active galactic nuclei, brilliantly luminous objects powered by supermassive black holes as they gather and condense huge quantities of dust and gas.”

You can read more in the Monthly Notices of the Royal Astronomical Society or in preprint version on Arxiv. Below are some different versions of the YouTube video on top, one with weather symbols and another showing a diagram with varying X-ray emission.

The research was led by Alex Markowitz, an astrophysicist at the University of California, San Diego and the Karl Remeis Observatory in Bamberg, Germany.

There have been a few neat studies lately looking at the environment around these huge objects. One examined how the black hole fuels itself, while another suggested that perhaps these singularities formed as twins before evolving.

Source: Royal Astronomical Society

What’s At The Center Of Our Galaxy?

What's At The Center Of Our Galaxy?

Dr. Andrea Ghez has spent much of her career studying the region right around the center of the Milky Way, including its supermassive black hole. In fact, she helped discover it in the first place. Dr. Ghez speaks about this amazing and dynamic region.

“Hi, I’m Dr. Andrea Ghez, and I’m a professor of physics and astronomy at UCLA. I study the center of our galaxy. The original objective was to figure out if there’s a supermassive black hole there, and in doing this, we’ve actually uncovered more questions than answers.”

What are you looking for at the center of the galaxy?

“We are tremendously privileged to be able to study the center of the galaxy, and have this exquisite laboratory to play with, to get insight into the fundamental physics of black holes, and also their astrophysical role in the formation and evolution of galaxies. You can also ask what kinds of phenomena do you expect to see around a black hole, and we have a lot of predictions about our thoughts about how galaxies form and evolve, and our ideas suggest that there’s a feedback between the galaxy and the black hole. But many of these models predict things that we simply don’t see, which again provides yet another playground.”

What’s it like around the supermassive black hole at the center of the galaxy?

“If you could get into a spaceship and get right down to the black hole, it would be a very busy place. Stars would be zooming around, like the sun, but you’d have a very busy day. You wouldn’t survive – I guess that would be another problem! You’d get torn apart. It’s just a very extreme place. The analogy that often gets made with the center of the galaxy is that it’s like the urban downtown, and we live out in the suburbs, so we live in a very calm place whereas the center of the galaxy is a a very extreme place, in almost every way you can describe an environment.”

What are some of the discoveries?

Astronomy Image Gallery
Stars at the Galactic Center. Credit: Astronomy Image Gallery

“The observations at the center of the Milky Way have taught us that one, it’s really normal to have a black hole at the center of the galaxy. I mean, our galaxy is completely ordinary, garden-variety, nothing-special-about-us, so if we have one, presumably every galaxy harbors a supermassive black hole at it’s center. We’ve also learned that the idea that a supermassive black hole should be surrounded by a very dense concentration of very old stars is not true. And that prediction is often used in other galaxies to find their black holes, because we can’t do the kinds of experiments we’ve done at the center of our own – that you look for this concentration of light, but in our galaxy we’re not seeing that, so you have a case where’s there’s absolutely clearly a supermassive black hole, yet you don’t see this collection of old stars. That’s a puzzle.

“Another puzzle that we’ve found that’s illuminating our ideas about other galaxies is that people predicted that you shouldn’t see young stars being formed near a black hole. In fact, in the early 1980’s, when people recognized that there were young stars found in the vicinity of a black hole, that was used to argue that perhaps you couldn’t possibly have a black hole because of these young stars. And yet again, we have a supermassive black hole – we know it, and those young stars are still exist, and we’ve even found stars even closer. And it’s the tidal forces that make it even more difficult to understand why the young stars should be there. The tidal forces pull the gases apart, and for star formation, you need a very fragile balls of gas and dust to collapse, so something’s amiss.”

How might those young stars get formed?

“There are so many ideas about how young stars could form at the center of the galaxy, but the one that has the most support is the idea that, at the time that these stars were being formed, that there was a much denser concentration of gas than there is today, and in that denser concentration you can get the collapse of those little clouds. We think that because as we continue to study the orbits of those stars, and what we’ve seen is that those orbits outside a certain distance start to fall into an ordered plane, like the planets orbiting the sun. We see a substantial fraction of them having a common orbital plane, and that looks very reminiscent to the solar system. The same way the planets formed out of a gas disc in the early days, that’s the same idea that is being invoked for these young stars, on a very different scale.”

Thousands Of Supermassive Black Holes Could Lurk In New X-Ray Data

Artist's conception of the SWIFT satellite in the act of capturing a gamma-ray burst. Credit: NASA
Artist's conception of the SWIFT satellite in the act of capturing a gamma-ray burst. Credit: NASA

Supermassive black holes likely are behind most of the nearly 100,000 new X-ray sources plotted by the Swift X-ray Telescope, according to findings led by the University of Leicester in the United Kingdom. The results came from poring over eight years of data produced by the Swift space observatory.

“Stars and galaxies emit X-rays because the electrons in them move at extremely high speeds, either because they are very hot (over a million degrees) or because extreme magnetic fields accelerate them. The underlying cause is usually gravity; gas can be compressed and heated as it falls on to black holes, neutron stars and white dwarfs or when trapped in the turbulent magnetic fields of stars like our Sun,” the university stated.

“Most of the newly discovered X-ray sources are expected to signal the presence of super-massive black holes in the centers of large galaxies many millions of light-years from earth, but the catalog also contains transient objects (short-lived bursts of X-ray emission) which may come from stellar flares or supernovae.”

The results were published in The Astrophysical Journal, which you can read here. You can also read the prepublished version on Arxiv.


Plot points across the sky showing the new X-ray sources that the SWIFT satellite found. Blue represents higher-energy sources, and red lower-energy ones. The line represents the galactic plane, where many of the sources are concentrated. Source: Evans (University of Leicester)
Plot points across the sky showing the new X-ray sources that the SWIFT satellite found. Blue represents higher-energy sources, and red lower-energy ones. The line represents the galactic plane, where many of the sources are concentrated. Source:
Evans (University of Leicester)

‘Light Echos’ Reveal Old, Bright Outbursts Near Milky Way’s Black Hole

X-ray emissions from the supermassive black hole in the center of the Milky Way galazy, about 26,000 light years from Earth. Credit: NASA/CXC/APC/Université Paris Diderot/M.Clavel et al

How’s that for a beacon? NASA’s Chandra X-ray Observatory has tracked down evidence of at least a couple of past luminous outbursts near the Milky Way’s huge black hole. These flare-ups took place sometime in the past few hundred years, which is very recently in astronomical terms.

“The echoes from Sagittarius A were likely produced when large clumps of material, possibly from a disrupted star or planet, fell into the black hole,” the Chandra website stated.

“Some of the X-rays produced by these episodes then bounced off gas clouds about 30 to 100 light years away from the black hole, similar to how the sound from a person’s voice can bounce off canyon walls. Just as echoes of sound reverberate long after the original noise was created, so too do light echoes in space replay the original event.”

The astronomers saw evidence of “rapid variations” in how X-rays are emitted from gas clouds circling the hole, revealing clues that the area likely got a million times brighter at times.

Check out more information on Chandra’s website.

Black Hole Secrets: Revealing The S-Star

Sgr A Chandra Image Courtesy of NASA/CXC/MIT/F. Baganoff, R. Shcherbakov et al.

Deep in the heart of the Milky Way resides a black hole. However, that is not the mysterious object which scientists Fabio Antonini, of the Canadian Institute for Theoretical Astrophysics, and David Merritt, of the Rochester Institute of Technology, have been endeavoring to explain. The objects of their attention are the orbits of massive young stars which attend it. They are called “S-stars”.

No. That’s not a stutter. S-Stars are a legitimate phenomenon which enable researchers to even more closely examine black hole activity. Their very presence causes astronomers to question what they know. For example, how is it possible for these massive young stars to orbit so close to a region where it would be highly unlikely for them to form there? The sheer force of the strong gravity near a black hole means these stars had to have once been further away from their observed position. However, when theoreticians created models to depict how S-stars might have traveled to their current orbital positions, the numbers simply didn’t match up. How could their orbits be so radically removed from predictions?

Today, Dr. Antonini offered his best explanation of this enigma at the annual meeting of the Canadian Astronomical Society (CASCA). In “The Origin of the S-star Cluster at the Galactic Center,” he gave a unified theory for the origin and dynamics of the S-stars. It hasn’t been an easy task, but Antonini has been able to produce a very viable theory of how these stars were able to get in close proximity to a supermassive black hole in only tens of millions of years since their formation.

“Theories exist for how migration from larger distances has occurred, but have up until now been unable to convincingly explain why the S-stars orbit the galactic center the way they do,” Antonini said. “As main-sequence stars, the S-stars cannot be older than about 100 million years, yet their orbital distribution appears to be ‘relaxed’, contrary to the predictions of models for their origin.”

3-dimensional visualization of the stellar orbits in the Galactic center based on data obtained by the W. M. Keck Telescopes between 1995 and 2012. Stars with the best determined orbits are shown with full ellipses and trails behind each star span ~15-20 years. These stars are color-coded to represent their spectral type: Early-type (young) stars are shown in teal green, late-type (old) stars are shown in orange, and those with unknown spectral type are shown in magenta. Stars without ellipses are from a statistical sample and follow the observed radial distributions for the early (white) or late (yellow/orange) type stars. These stars are embedded in a model representation of the inner Milky Way provided by NCSA/AVL to provide context for the visualization.
3-dimensional visualization of the stellar orbits in the Galactic center based on data obtained by the W. M. Keck Telescopes between 1995 and 2012. Stars with the best determined orbits are shown with full ellipses and trails behind each star span ~15-20 years. These stars are color-coded to represent their spectral type: Early-type (young) stars are shown in teal green, late-type (old) stars are shown in orange, and those with unknown spectral type are shown in magenta. Stars without ellipses are from a statistical sample and follow the observed radial distributions for the early (white) or late (yellow/orange) type stars. These stars are embedded in a model representation of the inner Milky Way provided by NCSA/AVL to provide context for the visualization.

According to Antonini and Merritt’s model, S-stars began much further away from the galactic center. Normal? Yep. Normal mode. Then these seemingly normal orbiting stars encountered the black hole’s gravity and began their spiral inward. As they made the inexorable trek, they then encountered the gravity of other stars in the vicinity which then changed the S-stars orbital pattern. It’s a simple insight, and one that verifies how the galactic center evolves from the conjoined influence of a supermassive black holes relativistic effects and the handiwork of gravitational interactions.

“Theoretical modeling of S-star orbits is a means to constrain their origin, to probe the dynamical mechanisms of the region near the galactic center and,” says Merritt, “indirectly to learn about the density and number of unseen objects in this region.”

Although the presence of supermassive black holes at the center of nearly all massive galaxies isn’t a new concept, further research into how they take shape and evolve leads to a better understanding of what we see around them. These regions are deeply connected to the very formation of the galaxy where they exist. With the center of our own galaxy – Sagittarius A – so near to home, it has become the perfect laboratory to observe manifestations such as S-stars. Tracking their orbits over an extended period of time has validated the presence of a supermassive black hole and enlightened our thinking of our own galaxy’s many peculiarities.

Original Story Source: Canadian Astronomical Society Press Release

Black Holes Can Get Really Big, And We Have No Idea Why

Artist’s rendering of the environment around the supermassive black hole at the center of Mrk 231. The broad outflow seen in the Gemini data is shown as the fan-shaped wedge at the top of the accretion disk around the black hole, in side view. A similar outflow is probably present under the disk as well. The total amount of material entrained in the broad flow is at least 400 times the mass of the sun per year. Credit: Gemini Observatory/AURA, artwork by Lynette Cook

Right now, as you read this article, it’s quite possible that the ultra-huge black hole at the center of our galaxy is feasting on asteroids or supercooked gas.

We’ve seen these supermassive black holes in other spots in the universe, too: merging together, for example. They’re huge heavyweights, typically ranging between hundreds of thousands to billions of times the mass of the Sun. But we also know, paradoxically, that mini supermassive black holes exist.

So while we’ve observed the gravitational effects of these monsters, a University of Alberta researcher today (May 30) is going to outline the big question: how the heck some of them got so massive. For now, no one knows for sure, but scientists are naturally taking a stab at trying to figure this out.

Maybe they were your ordinary stellar black holes, just three to 100 times the mass of the sun, that underwent a growth spurt. There’s a sticking point with that theory, though:  “To do this, the black holes would have to gorge excessively, at rates that require new physics,” stated the Canadian Astronomical Society.

Illustration of Cygnus X-1, another stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)
Illustration of Cygnus X-1, a stellar-mass black hole located 6070 ly away. (NASA/CXC/M.Weiss)

“We might also expect to see some black holes that are intermediate in mass between stellar-mass and supermassive black holes in our nearby universe,” the society added, “like a band that is consistently releasing albums, but never making it truly big.”

Anyway, Jeanette Gladstone (a postdoctoral researcher) will make a presentation at CASCA’s annual meeting in Vancouver today outlining some ideas. Gladstone, by the way, focuses on X-rays (from black holes) in her work. Here’s what she said on her research page:

HLX-1 in the periphery of the edge-on spiral galaxy ESO 243-49. Credit: Heidi Sagerud.
HLX-1 in the periphery of the edge-on spiral galaxy ESO 243-49. Credit: Heidi Sagerud.

“I am currently trying to understand a strange group of curiously bright X-ray binaries. These ultraluminous X-ray sources emit too much X-ray radiation to be explained by standard accretion [of] only a regular stellar mass black hole,” she wrote.

“So I use various parts of the electromagnetic spectrum to try and understand what makes them appear so bright. More recently I have started looking at the very brightest of these sources, a group of objects that have recently become a class in their own right. These are the hyperluminous X-ray sources.”

For context, here’s more info on a hyperluminous X-ray source (and its black hole) in spiral galaxy ESO 234-9, as studied by the Hubble Space Telescope and the Swift X-Ray Telescope.

Astronomers were pretty excited with this 2012 work: “For the first time, we have evidence on the environment, and thus the origin, of this middle-weight black hole,” said Mathieu Servillat, a member of the Harvard-Smithsonian Center for Astrophysics research team, at the time.

Credit: CASCA

First-Ever Image of a Black Hole to be Captured by Earth-Sized Scope

Spitzer telescope view of the galactic center. (NASA/JPL-Caltech/S. Stolovy)


“Sgr A* is the right object, VLBI is the right technique, and this decade is the right time.”

So states the mission page of the Event Horizon Telescope, an international endeavor that will combine the capabilities of over 50 radio telescopes across the globe to create a single Earth-sized telescope to image the enormous black hole at the center of our galaxy. For the first time, astronomers will “see” one of the most enigmatic objects in the Universe.

And tomorrow, January 18, researchers from around the world will convene in Tucson, AZ to discuss how to make this long-standing astronomical dream a reality.

During a conference organized by Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory, and Dan Marrone, an assistant professor of astronomy at the Steward Observatory, astrophysicists, scientists and researchers will gather to coordinate the ultimate goal of the Event Horizon Telescope; that is, an image of Sgr A*’s accretion disk and the “shadow” of its event horizon.

“Nobody has ever taken a picture of a black hole. We are going to do just that.”

– Dimitrios Psaltis, associate professor of astrophysics at the University of Arizona’s Steward Observatory

Sgr A* (pronounced as “Sagittarius A-star”) is a supermassive black hole residing at the center of the Milky Way. It is estimated to contain the equivalent mass of 4 million Suns, packed into an area smaller than the diameter of Mercury’s orbit.

Because of its proximity and estimated mass, Sgr A* presents the largest apparent event horizon size of any black hole candidate in the Universe. Still, its size in the sky is about the same as viewing “a grapefruit on the Moon.”

So what are astronomers expecting to actually “see”?

(Read more: What does a black hole look like?)

A black hole's "shadow", or event horizon. (NASA illustration)

Because black holes by definition are black – that is, invisible in all wavelengths of radiation due to the incredibly powerful gravitational effect on space-time around them – an image of the black hole itself will be impossible. But Sgr A*’s accretion disk should be visible to radio telescopes due to its billion-degree temperatures and powerful radio (as well as submillimeter, near infrared and X-ray) emissions… especially in the area leading up to and just at its event horizon. By imaging the glow of this super-hot disk astronomers hope to define Sgr A*’s Schwarzschild radius – its gravitational “point of no return”.

This is also commonly referred to as its shadow.

The position and existence of Sgr A* has been predicted by physics and inferred by the motions of stars around the galactic nucleus. And just last month a giant gas cloud was identified by researchers with the European Southern Observatory, traveling directly toward Sgr A*’s accretion disk. But, if the EHT project is successful, it will be the first time a black hole will be directly imaged in any shape or form.

“So far, we have indirect evidence that there is a black hole at the center of the Milky Way,” said Dimitrios Psaltis. “But once we see its shadow, there will be no doubt.”

(Read more: Take a trip into our galaxy’s core)

Submillimeter Telescope on Mt. Graham, AZ. (Used with permission from University of Arizona, T. W. Folkers, photographer.)

The ambitious Event Horizon Telescope project will use not just one telescope but rather a combination of over 50 radio telescopes around the world, including the Submillimeter Telescope on Mt. Graham in Arizona, telescopes on Mauna Kea in Hawaii and the Combined Array for Research in Millimeter-wave Astronomy in California, as well as several radio telescopes in Europe, a 10-meter dish at the South Pole and, if all goes well, the 50-radio-antenna capabilities of the new Atacama Large Millimeter Array in Chile. This coordinated group effort will, in effect, turn our entire planet into one enormous dish for collecting radio emissions.

By using long-term observations with Very Long Baseline Interferometry (VLBI) at short (230-450 GHz) wavelengths, the EHT team predicts that the goal of imaging a black hole will be achieved within the next decade.

“What is great about the one in the center of the Milky Way is that is big enough and close enough,” said assistant professor Dan Marrone. “There are bigger ones in other galaxies, and there are closer ones, but they’re smaller. Ours is just the right combination of size and distance.”

Read more about the Tucson conference on the University of Arizona’s news site here, and visit the Event Horizon Telescope project site here.


Looking Into The Eye Of A Monster – Active Galaxy Markarian 509

Active galaxy Markarian 509 as seen by the Hubble Space Telescope's WFPC2. Credits: NASA, ESA, J. Kriss (STScI) and J. de Plaa (SRON)


“The world is a vampire, sent to drain… Secret destroyers, hold you up to the flames…” Ah, yes. It’s the biggest vampire of all – the supermassive black hole. In this instance, it’s not any average, garden-variety black hole, but one that’s 300 million times the mass of the Sun and growing. Bullet with butterfly wings? No. This is more a case of butterfly wings with bullets.

An international team of astronomers using five different telescopes set their sites on 460 million light-year distant Markarian 509 to check out the action surrounding its huge black hole. The imaging team included ESA’s XMM-Newton, Integral, NASA/ESA Hubble Space Telescope, NASA’s Chandra and Swift satellites, and the ground-based telescopes WHT and PARITEL. For a hundred days they monitored Markarian 509. Why? Because it is known to have brightness variations which could mean turbulent inflow. In turn, the inner radiation then drives an outflow of gas – faster than a speeding bullet.

“XMM-Newton really led these observations because it has such a wide X-ray coverage, as well as an optical monitoring camera,” says Jelle Kaastra, SRON Netherlands Institute for Space Research, who coordinated an international team of 26 astronomers from 21 institutes on four continents to make these observations.

And the vampire reared its ugly head. Instead of the previously documented 25% changes, it jumped to 60%. The hot corona surrounding the black hole was spattering out cold gas “bullets” at speeds in excess of one million miles per hour. These projectiles are torn away from the dusty torus, but the real surprise is that they are coming from an area just 15 light years away from the center. This is a lot further than most astronomers speculate could happen.

“There has been a debate in astronomy for some time about the origin of the outflowing gas,” says Kaastra.

But there’s more than just bullets here. These new observations at multiple wavelengths are showing the coolest gas in the line of sight toward Markarian 509 has 14 different velocity components – all from different locations at the galaxy’s heart. What’s more, there’s indications the black hole accretion disc may have a shield of gas harboring temperatures ranging in the millions of degrees – the motivating force behind x-rays and gamma rays.

An artist's impression of the central engine of an active galaxy. A black hole is surrounded by matter waiting to fall in. Fearsome radiation from near the black hole drives an outflow of gas. Credits: NASA and M. Weiss (Chandra X-ray Center)

“The only way to explain this is by having gas hotter than that in the disc, a so-called ‘corona’, hovering above the disc,” Jelle Kaastra says. “This corona absorbs and reprocesses the ultraviolet light from the disc, energising it and converting it into X-ray light. It must have a temperature of a few million degrees. Using five space telescopes, which enabled us to observe the area in unprecedented detail, we actually discovered a very hot ‘corona’ of gas hovering above the disc. This discovery allows us to make sense of some of the observations of active galaxies that have been hard to explain so far.”

To make things even more entertaining, the study has also found the signature of interstellar gas which may have been the result of a one-time galaxy collision. Although the evidence may be hundreds of thousands of light years away from Mrk 509, it may have initially triggered this activity.

“The results underline how important long-term observations and monitoring campaigns are to gain a deeper understanding of variable astrophysical objects. XMM-Newton made all the necessary organisational changes to enable such observations, and now the effort is paying off,” says Norbert Schartel, ESA XMM-Newton Project Scientist.

Ah, Markarian 509… “Despite all my rage… I am still just a rat in cage.”

Original Story Source: ESA News. For Further Reading: Multiwavelength Campaign on Mrk 509 VI. HST/COS Observations of the Far-ultraviolet Spectrum.

All-Sky Radio Image in 60 Seconds, No Moving Parts

First LOFAR high-band image (MPIfR)

This image is a software-calibrated image with high signal-to-noise ratio at a frequency of 120 MHz, of the radio sky above Effelsberg, Germany, on November10, 2009. It has North at the top and East at the left, just as a person would have seen the entire sky when lying on their back on a flat field near Effelsberg late in the afternoon on November 10, if their eyes were sensitive to radio waves.

The two bright (yellow) spots are Cygnus A – a giant radio galaxy powered by a supermassive black hole – near the center of the image, and Cassiopeia A – a bright radio source created by a supernova explosion about 300 years ago – at the upper-left in the image. The plane of our Milky Way galaxy can also be seen passing by both Cassiopeia A and Cygnus A, and extending down to the bottom of the image. The North Polar Spur, a large cloud of radio emission within our own galaxy, can also be seen extending from the direction of the Galactic center in the South, toward the western horizon in this image. “We made this image with a single 60 second “exposure” at 120 MHz using our high-band LOFAR field in Effelsberg”, says James Anderson, project manager of the Effelsberg LOFAR station.

“The ability to make all-sky images in just seconds is a tremendous advancement compared to existing radio telescopes which often require weeks or months to scan the entire sky,” Anderson went on. This opens up exciting possibilities to detect and study rapid transient phenomena in the universe.

LOFAR, the LOw Frequency ARray, was designed and developed by ASTRON (Netherlands Institute for Radio Astronomy) with 36 stations centered on Exloo in the northeast of The Netherlands. It is now an international project with stations being built in Germany, France, the UK and Sweden connected to the central data processing facilities in Groningen (NL) and the ASTRON operations center in Dwingeloo (NL). The first international LOFAR station (IS-DE1) was completed on the area of the Effelsberg radio observatory next to the 100-m radio telescope of the Max-Planck-Institut für Radioastronomie (MPIfR).

Operating at relatively low radio frequencies from 10 to 240 MHz, LOFAR has essentially no moving parts to track objects in the sky; instead digital electronics are used to combine signals from many small antennas to electronically steer observations on the sky. In certain electronic modes, the signals from all of the individual antennas can be combined to make images of the entire radio sky visible above the horizon.

IS-DE1: Some of the 96 low-band dipole antennas, Effelsberg LOFAR station (foreground); high-band array (background) (Credit: James Anderson, MPIfR)

LOFAR uses two different antenna designs, to observe in two different radio bands, the so-called low-band from 10 to 80 MHz, and the high-band from 110 to 240 MHz. All-sky images using the low-band antennas at Effelsberg were made in 2007.

Following the observation for the first high-band, all-sky image, scientists at MPIfR made a series of all-sky images covering a wide frequency range using both the low-band and high-band antennas at Effelsberg.

Effelsberg sky through LOFAR eyes (Credit: James Anderson, MPIfR)

The movie of these all-sky images has been compiled and is shown above. The movie starts at a frequency of 35 MHz, and each subsequent frame is about 4 MHz higher in frequency, through 190 MHz. The resolution of the Effelsberg LOFAR telescope changes with frequency. At 35 MHz the resolution is about 10 degrees, at 110 MHz it is about 3.4 degrees, and at 190 MHz it is about 1.9 degrees. This change in resolution can be seen by the apparent size of the two bright sources Cygnus A and Cassiopeia A as the frequency changes.

Scientists at MPIfR and other institutions around Europe will use measurements such as these to study the large-sky structure of the interstellar matter of our Milky Way galaxy. The low frequencies observed by LOFAR are ideal for studying the low energy cosmic ray electrons in the Milky Way, which trace out magnetic field structures through synchrotron emission. Other large-scale features such as supernova remnants, star-formation regions, and even some other nearby galaxies will need similar measurements from individual LOFAR telescopes to provide accurate information on the large-scale emission in these objects. “We plan to search for radio transients using the all-sky imaging capabilities of the LOFAR telescopes”, says Michael Kramer, director at MPIfR, in Bonn. “The detection of rapidly variable sources using LOFAR could lead to exciting discoveries of new types of astronomical objects, similar to the discoveries of pulsars and gamma-ray bursts in the past decades.”

“The low-frequency sky is now truly open in Effelsberg and we have the capability at the observatory to observe in a wide frequency range from 10 MHz to 100 GHz”, says Anton Zensus, also director at MPIfR. “Thus we can cover four orders of magnitude in the electromagnetic spectrum.”

Source: Max-Planck-Institut für Radioastronomie

Supermassive Black Holes Spinning Backwards Create Death Ray Jets?

Centaurus A. Image credit: NASA

Why do some of the supermassive black holes in active galactic nuclei create back-to-back jets that can vaporize entire solar systems, while others have no jets at all?

Dan Evans, a postdoctoral researcher at MIT Kavli Institute for Astrophysics and Space Research (MKI) thinks he knows why; it’s because the jet-producing supermassive black holes are spinning backwards, relative to their accretion disks.

Radio image of a typical DRAGN, showing the main features (Image credit:C. L. Carilli)

For two years, Evans has been comparing several dozen galaxies whose black holes host powerful jets (these galaxies are known as radio-loud active galactic nuclei, or AGN, and are often DRAGNs – double radio source associated with galactic nucleus) to those galaxies with supermassive black holes that do not eject jets. All black holes – those with and without jets – feature accretion disks, the clumps of dust and gas rotating just outside the event horizon. By examining the light reflected in the accretion disk of an AGN black hole, he concluded that jets may form right outside black holes that have a retrograde spin – or which spin in the opposite direction from their accretion disk. Although Evans and a colleague recently hypothesized that the gravitational effects of black hole spin may have something to do with why some have jets, Evans now has observational results to support the theory in a paper published in the Feb. 10 issue of the Astrophysical Journal.

Although Evans has suspected for nearly five years that retrograde black holes with jets are missing the innermost portion of their accretion disk, it wasn’t until last year that computational advances meant that he could analyze data collected between late 2007 and early 2008 by the Suzaku observatory, a Japanese satellite launched in 2005 with collaboration from NASA, to provide an example to support the theory. With these data, Evans and colleagues from the Harvard-Smithsonian Center for Astrophysics, Yale University, Keele University and the University of Hertfordshire in the United Kingdom analyzed the spectra of the active galactic nucleus with a pair of jets located about 800 million light years away in an AGN named 3C 33.

1477 MHz image of 3C 33 (Credit: Leahy & Perley (1991))

“It’s the first convincing galaxy of this type seen at this angle where the result is pretty robust,” said Patrick Ogle, an assistant research scientist at the California Institute of Technology, who studies AGN. Ogle believes Evans’s theory regarding retrograde spin is among the best explanations he has heard for why some AGN contain a supermassive black hole with a jet and others don’t.

Astrophysicists can see the signatures of x-ray emission from the inner regions of the accretion disk, which is located close to the edge of a black hole, as a result of a super hot atmospheric ring called a corona that lies above the disk and emits light (electromagnetic radiation) that an observatory like Suzaku can detect. In addition to this direct light, a fraction of light passes down from the corona onto the black hole’s accretion disk and is reflected from the disk’s surface, resulting in a spectral signature pattern called the Compton reflection hump, also detected by Suzaku.

But Evans’ team never found a Compton reflection hump in the x-ray emission given off by 3C 33, a finding the researchers believe provides crucial evidence that the accretion disk for a black hole with a jet is truncated, meaning it doesn’t extend as close to the center of the black hole with a jet as it does for a black hole that does not have a jet. The absence of this innermost portion of the disk means that nothing can reflect the light from the corona, which explains why observers only see a direct spectrum of x-ray light.

The researchers believe the absence may result from retrograde spin, which pushes out the orbit of the innermost portion of accretion material as a result of general relativity, or the gravitational pull between masses. This absence creates a gap between the disk and the center of the black hole that leads to the piling of magnetic fields that provide the force to fuel a jet.

While Ogle believes that the retrograde spin theory is a good explanation for Evans’ observations, he said it is far from being confirmed, and that it will take more examples with consistent results to convince the astrophysical community.

The field of research will expand considerably in August 2011 with the planned launch of NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) satellite, which is 10 to 50 times more sensitive to spectra and the Compton reflection hump than current technology. NuSTAR will help researchers conduct a “giant census” of supermassive black holes that “will absolutely revolutionize the way we look at X-ray spectra of AGN,” Evans explained. He plans to spend another two years comparing black holes with and without jets, hoping to learn more about the properties of AGN. His goal over the next decade is to determine how the spin of a supermassive black hole evolves over time.

Sources: MITnews, Evans’ Astrophysical Journal paper (preprint is arXiv:1001.0588)