A Supermassive Black Hole with a Case of the Hiccups

Artist’s illustration of a small black hole orbiting a supermassive black hole, resulting in the former producing bursts of energy from the supermassive black hole’s disk of gas and dust. (Credit: Jose-Luis Olivares, MIT)

Can binary black holes, two black holes orbiting each other, influence their respective behaviors? This is what a recent study published in Science Advances hopes to address as a team of more than two dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated how a smaller black hole orbiting a supermassive black hole could alter the outbursts of the energy being emitted by the latter, essentially giving it “hiccups”. This study holds the potential to help astronomers better understand the behavior of binary black holes while producing new methods in finding more binary black holes throughout the cosmos.

Continue reading “A Supermassive Black Hole with a Case of the Hiccups”

The Brightest Object Ever Seen in the Universe

This artist’s impression shows the record-breaking quasar J059-4351, the bright core of a distant galaxy that is powered by a supermassive black hole. The light comes from gas and dust that's heated up before it's drawn into the black hole. Credit: ESO/M. Kornmesser

It’s an exciting time in astronomy today, where records are being broken and reset regularly. We are barely two months into 2024, and already new records have been set for the farthest black hole yet observed, the brightest supernova, and the highest-energy gamma rays from our Sun. Most recently, an international team of astronomers using the ESO’s Very Large Telescope in Chile reportedly saw the brightest object ever observed in the Universe: a quasar (J0529-4351) located about 12 billion light years away that has the fastest-growing supermassive black hole (SMBH) at its center.

Continue reading “The Brightest Object Ever Seen in the Universe”

The Event Horizon Telescope Zooms in on a Black Hole's Jet

The jet of the black hole in 3C 84 at different spatial scales. Credit: Georgios Filippos Paraschos (MPIfR)

Although supermassive black holes are common throughout the Universe, we don’t have many direct images of them. The problem is that while they can have a mass of millions or billions of stars, even the nearest supermassive black holes have tiny apparent sizes. The only direct images we have are those of M87* and Sag A*, and it took a virtual telescope the size of Earth to capture them. But we are still in the early days of the Event Horizon Telescope (EHT), and improvements are being made to the virtual telescope all the time. Which means we are starting to look at more supermassive black holes.

Continue reading “The Event Horizon Telescope Zooms in on a Black Hole's Jet”

Sometimes Compact Galaxies Hide Their Black Holes

Illustration of an active quasar. What role does its dark matter halo play in activating the quasar? Credit: ESO/M. Kornmesser
Illustration of an active quasar. New research shows that SMBHs eat rapidly enough to trigger them. Credit: ESO/M. Kornmesser

Quasars, short for quasi-stellar objects, are one of the most powerful and luminous classes of objects in our Universe. A subclass of active galactic nuclei (AGNs), quasars are extremely bright galactic cores that temporarily outshine all the stars in their disks. This is due to the supermassive black holes in the galactic cores that consume material from their accretion disks, a donut-shaped ring of gas and dust that orbit them. This matter is accelerated to close to the speed of light and slowly consumed, releasing energy across the entire electromagnetic spectrum.

Based on past observations, it is well known to astronomers that quasars are obscured by the accretion disk that surrounds them. As powerful radiation is released from the SMBH, it causes the dust and gas to glow brightly in visible light, X-rays, gamma-rays, and other wavelengths. However, according to a new study led by researchers from the Centre for Extragalactic Astronomy (CEA) at Durham University, quasars can also be obscured by the gas and dust of their entire host galaxies. Their findings could help astronomers better understand the link between SMBHs and galactic evolution.

Continue reading “Sometimes Compact Galaxies Hide Their Black Holes”

A Black Hole Switched On in the Blink of an Eye

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion. Credit: ESO, ESA/Hubble, M. Kornmesser

In 2019, a team of astronomers led by Dr. Samantha Oates of the University of Birmingham discovered one of the most powerful transients ever seen – where astronomical objects change their brightness over a short period. Oates and her colleagues found this object, known as J221951-484240 (or J221951), using the Ultra-Violet and Optical Telescope (UVOT) on NASA’s Neil Gehrels Swift Observatory while searching for the source of a gravitational wave (GW) that was thought to be caused by two massive objects merging in our galaxy.

Multiple follow-up observations were made using the UVOT and Swift’s other instruments – the Burst Alert Telescope (BAT) and X-Ray Telescope (XRT), the Hubble Space Telescope, the South African Large Telescope (SALT), the Wide-field Infrared Survey Explorer (WISE), the ESO’s Very Large Telescope (VLT), the Australia Telescope Compact Array (ATCA), and more. The combined observations and spectra revealed that the source was a supermassive black hole (SMBH) in a distant galaxy that mysteriously “switched on,” becoming one of the most dramatic bursts of brightness ever seen with a black hole.

Continue reading “A Black Hole Switched On in the Blink of an Eye”

Pulsars Could Help Map the Black Hole at the Center of the Milky Way

The Atacama Large Millimeter/submillimeter Array (ALMA) looked at Sagittarius A*, (image of Sag A* by the EHT Collaboration) to study something bright in the region around Sag A*. Credit: ESO/José Francisco Salgado.

The Theory of General Relativity (GR), proposed by Einstein over a century ago, remains one of the most well-known scientific postulates of all time. This theory, which explains how spacetime curvature is altered in the presence of massive objects, remains the cornerstone of our most widely-accepted cosmological models. This should come as no surprise since GR has been verified nine ways from Sunday and under the most extreme conditions imaginable. In particular, scientists have mounted several observation campaigns to test GR using Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way.

Last year, the Event Horizon Telescope (EHT) – an international consortium of astronomers and observatories – announced they had taken the first images of Sag A*, which came just two years after the release of the first-ever images of an SMBH (M87). In 2014, the European members of the EHT launched another initiative known as BlackHoleCam to gain a better understanding of SMBHs using a combination of radio imaging, pulsar observations, astrometry, and GR. In a recent paper, the BHC initiative described how they tested GR by observing pulsars orbiting Sgr A*.

Continue reading “Pulsars Could Help Map the Black Hole at the Center of the Milky Way”

Gaze at a Nearby Actively Feeding Supermassive Black Hole

This Hubble image shows the central region of NGC 4395. The image uses data from Hubble's Wide Field Camera 3. Credits: NASA, ESA, S. Larsen (Radboud Universiteit Nijmegen) and E. Sabbi (STScI); Processing: Gladys Kober (NASA/Catholic University of America)

Astronomers recently shared a new image captured by the Hubble Space Telescope of the galaxy NGC 4395. This relatively diffuse and dim dwarf galaxy is located just 14 million light-years from Earth.

NGC 4395 has several oddities, and this new image zooms in on the galaxy’s central region to highlight just one of those quirks. NGC 4395 is different from other dwarf galaxies because it contains an actively feeding supermassive black hole at its center.

But this black hole is considered one of the lowest mass supermassive holes ever detected, an oxymoron if there ever was one.  

Continue reading “Gaze at a Nearby Actively Feeding Supermassive Black Hole”

Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments

Milky Way centre by the MeerKAT array of 65 radio dishes in South Africa. The image spans 4 times the Moon's size in the sky. Ian Heywood (Oxford U.), SARAO; Here is a full sized version of the picture (which you have to check out!) that was posted in Astronomy Picture of the Day. Colour processing on the image was done by Juan Carlos Munoz-Mateos (ESO) whose Instagram channel you should definitely check out. Has some of the coolest astro images I've seen.

The inner 600 light years of our galaxy is a maelstrom of cosmic radiation, turbulent swirling gas clouds, intense star formation, supernovae, huge bubbles of radio energy, and of course a giant supermassive black hole. This bustling downtown of the Milky Way is a potential treasure trove of discovery but has been difficult to study as the galaxy’s central regions are obscured by dust and glaring radiation. But a new image of this region with unprecedented detail reveals more than we’ve ever seen before. We find some familiar objects like supernovae but also some mysterious structures – gaseous filaments dozens of light years long channeling electrons at near light speed.

Behold, the galaxy’s centre as never seen before:

The new MeerKAT image of the Galactic centre region is shown with the Galactic plane running horizontally across the image. Many new and previously-known radio features are evident, including supernova remnants, compact star-forming regions, and the large population of mysterious radio filaments. Colours indicate bright radio emission, while fainter emission is shown in greyscale. Credit: I. Heywood, SARAO. Image description: SARAO
Continue reading “Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments”

New Photos Show a Black Hole Blasting out Powerful Winds

Pictures of galaxies never cease to amaze, and astronomers are consistently coming up with new ones that provide a different viewpoint on the universe and maybe some exciting science along with it.  A recent picture of the galaxy NGC 7582, taken with the Very Large Telescope (VLT), shows an active supermassive black hole at the galaxy’s core. However, something appears to be redirecting its “wind” away from the rest of the spiral galaxy.

Continue reading “New Photos Show a Black Hole Blasting out Powerful Winds”

New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum

Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT)

The core of the Milky Way Galaxy (aka. Galactic Center), the region around which the rest of the galaxy revolves, is a strange and mysterious place. It is here that the Supermassive Black Hole (SMBH) that powers the compact radio source known as Sagittarius A* is located. It is also the most compact region in the galaxy, with an estimated 10 million stars within 3.26 light-years of the Galactic Center.

Using data from Chandra X-ray Observatory and the MeerKAT radio telescope, NASA and the National Research Foundation (NSF) of South Africa created a mosaic of the center of the Milky Way. Combining images taken in the x-ray and radio wavelengths, the resulting panoramic image manages to capture the filaments of super-heated gas and magnetic fields that (when visualized) shows the complex web of energy at the center of our galaxy.

Continue reading “New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum”