A Black Hole Switched On in the Blink of an Eye

This artist’s impression depicts a rapidly spinning supermassive black hole surrounded by an accretion disc. This thin disc of rotating material consists of the leftovers of a Sun-like star which was ripped apart by the tidal forces of the black hole. Shocks in the colliding debris as well as heat generated in accretion led to a burst of light, resembling a supernova explosion. Credit: ESO, ESA/Hubble, M. Kornmesser

In 2019, a team of astronomers led by Dr. Samantha Oates of the University of Birmingham discovered one of the most powerful transients ever seen – where astronomical objects change their brightness over a short period. Oates and her colleagues found this object, known as J221951-484240 (or J221951), using the Ultra-Violet and Optical Telescope (UVOT) on NASA’s Neil Gehrels Swift Observatory while searching for the source of a gravitational wave (GW) that was thought to be caused by two massive objects merging in our galaxy.

Multiple follow-up observations were made using the UVOT and Swift’s other instruments – the Burst Alert Telescope (BAT) and X-Ray Telescope (XRT), the Hubble Space Telescope, the South African Large Telescope (SALT), the Wide-field Infrared Survey Explorer (WISE), the ESO’s Very Large Telescope (VLT), the Australia Telescope Compact Array (ATCA), and more. The combined observations and spectra revealed that the source was a supermassive black hole (SMBH) in a distant galaxy that mysteriously “switched on,” becoming one of the most dramatic bursts of brightness ever seen with a black hole.

Continue reading “A Black Hole Switched On in the Blink of an Eye”

Pulsars Could Help Map the Black Hole at the Center of the Milky Way

The Atacama Large Millimeter/submillimeter Array (ALMA) looked at Sagittarius A*, (image of Sag A* by the EHT Collaboration) to study something bright in the region around Sag A*. Credit: ESO/José Francisco Salgado.

The Theory of General Relativity (GR), proposed by Einstein over a century ago, remains one of the most well-known scientific postulates of all time. This theory, which explains how spacetime curvature is altered in the presence of massive objects, remains the cornerstone of our most widely-accepted cosmological models. This should come as no surprise since GR has been verified nine ways from Sunday and under the most extreme conditions imaginable. In particular, scientists have mounted several observation campaigns to test GR using Sagittarius A* (Sgr A*), the supermassive black hole at the center of the Milky Way.

Last year, the Event Horizon Telescope (EHT) – an international consortium of astronomers and observatories – announced they had taken the first images of Sag A*, which came just two years after the release of the first-ever images of an SMBH (M87). In 2014, the European members of the EHT launched another initiative known as BlackHoleCam to gain a better understanding of SMBHs using a combination of radio imaging, pulsar observations, astrometry, and GR. In a recent paper, the BHC initiative described how they tested GR by observing pulsars orbiting Sgr A*.

Continue reading “Pulsars Could Help Map the Black Hole at the Center of the Milky Way”

Gaze at a Nearby Actively Feeding Supermassive Black Hole

This Hubble image shows the central region of NGC 4395. The image uses data from Hubble's Wide Field Camera 3. Credits: NASA, ESA, S. Larsen (Radboud Universiteit Nijmegen) and E. Sabbi (STScI); Processing: Gladys Kober (NASA/Catholic University of America)

Astronomers recently shared a new image captured by the Hubble Space Telescope of the galaxy NGC 4395. This relatively diffuse and dim dwarf galaxy is located just 14 million light-years from Earth.

NGC 4395 has several oddities, and this new image zooms in on the galaxy’s central region to highlight just one of those quirks. NGC 4395 is different from other dwarf galaxies because it contains an actively feeding supermassive black hole at its center.

But this black hole is considered one of the lowest mass supermassive holes ever detected, an oxymoron if there ever was one.  

Continue reading “Gaze at a Nearby Actively Feeding Supermassive Black Hole”

Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments

Milky Way centre by the MeerKAT array of 65 radio dishes in South Africa. The image spans 4 times the Moon's size in the sky. Ian Heywood (Oxford U.), SARAO; Here is a full sized version of the picture (which you have to check out!) that was posted in Astronomy Picture of the Day. Colour processing on the image was done by Juan Carlos Munoz-Mateos (ESO) whose Instagram channel you should definitely check out. Has some of the coolest astro images I've seen.

The inner 600 light years of our galaxy is a maelstrom of cosmic radiation, turbulent swirling gas clouds, intense star formation, supernovae, huge bubbles of radio energy, and of course a giant supermassive black hole. This bustling downtown of the Milky Way is a potential treasure trove of discovery but has been difficult to study as the galaxy’s central regions are obscured by dust and glaring radiation. But a new image of this region with unprecedented detail reveals more than we’ve ever seen before. We find some familiar objects like supernovae but also some mysterious structures – gaseous filaments dozens of light years long channeling electrons at near light speed.

Behold, the galaxy’s centre as never seen before:

The new MeerKAT image of the Galactic centre region is shown with the Galactic plane running horizontally across the image. Many new and previously-known radio features are evident, including supernova remnants, compact star-forming regions, and the large population of mysterious radio filaments. Colours indicate bright radio emission, while fainter emission is shown in greyscale. Credit: I. Heywood, SARAO. Image description: SARAO
Continue reading “Imaging the Galaxy’s Centre in Unprecedented Detail Reveals More Mysterious Filaments”

New Photos Show a Black Hole Blasting out Powerful Winds

Pictures of galaxies never cease to amaze, and astronomers are consistently coming up with new ones that provide a different viewpoint on the universe and maybe some exciting science along with it.  A recent picture of the galaxy NGC 7582, taken with the Very Large Telescope (VLT), shows an active supermassive black hole at the galaxy’s core. However, something appears to be redirecting its “wind” away from the rest of the spiral galaxy.

Continue reading “New Photos Show a Black Hole Blasting out Powerful Winds”

New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum

Credit: X-ray: NASA/CXC/UMass/Q.D. Wang; Radio: NRF/SARAO/MeerKAT)

The core of the Milky Way Galaxy (aka. Galactic Center), the region around which the rest of the galaxy revolves, is a strange and mysterious place. It is here that the Supermassive Black Hole (SMBH) that powers the compact radio source known as Sagittarius A* is located. It is also the most compact region in the galaxy, with an estimated 10 million stars within 3.26 light-years of the Galactic Center.

Using data from Chandra X-ray Observatory and the MeerKAT radio telescope, NASA and the National Research Foundation (NSF) of South Africa created a mosaic of the center of the Milky Way. Combining images taken in the x-ray and radio wavelengths, the resulting panoramic image manages to capture the filaments of super-heated gas and magnetic fields that (when visualized) shows the complex web of energy at the center of our galaxy.

Continue reading “New Mosaic Shows the Galactic Core From Opposite Sides of the Electromagnetic Spectrum”

A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel

Computer Simulation of a Quasar, a Supermassive Black Hole that is actively feeding and creating tremendous energy - created in "SpaceEngine" pro by author

A monster lurks at the heart of many galaxies – even our own Milky Way. This monster possesses the mass of millions or billions of Suns. Immense gravity shrouds it within a dark cocoon of space and time – a supermassive black hole. But while hidden in darkness and difficult to observe, black holes can also shine brighter than an entire galaxy. When feeding, these sleeping monsters awaken transforming into a quasar – one of the Universe’s most luminous objects. The energy a quasar radiates into space is so powerful, it can interfere with star formation for thousands of light years across their host galaxies. But one galaxy appears to be winning a struggle against its awoken blazing monster and in a recent paper published in the Astrophysical Journal, astronomers are trying to determine how this galaxy survives.

Animation of Interstellar Matter Falling into a Black Hole Creating a Quasar – ESA
Continue reading “A Galaxy is Making New Stars Faster Than its Black Hole Can Starve Them for Fuel”

7% of the Stars in the Milky Way’s Center Came From a Single Globular Cluster That Got Too Close and Was Broken Up

Central region of the Milky Way in infrared light. With this image, NASA's Spitzer Space Telescope has photographed the inner 890 x 640 light years of the Milky Way. The nuclear star cluster is located in a small area near the central massive black hole. The extended structures in the image are mostly clouds of gas and dust from the spiral arms of the Milky Way, which lie in the line of sight between Earth and the Galactic Centre. Image Credit: NASA/JPL-Caltech/S. Stolovy (Spitzer Science Center/Caltech)

The heart of the Milky Way can be a mysterious place. A gigantic black hole resides there, and it’s surrounded by a retinue of stars that astronomers call a Nuclear Star Cluster (NSC). The NSC is one of the densest populations of stars in the Universe. There are about 20 million stars in the innermost 26 light years of the galaxy.

New research shows that about 7% of the stars in the NSC came from a single source: a globular cluster of stars that fell into the Milky Way between 3 and 5 billion years ago.

Continue reading “7% of the Stars in the Milky Way’s Center Came From a Single Globular Cluster That Got Too Close and Was Broken Up”

There are powerful magnetic fields at the core of the Milky Way, driven by the supermassive black hole

NASA's Spitzer Space Telescope captured this stunning infrared image of the center of the Milky Way Galaxy, where the black hole Sagitarrius A resides. Credit: NASA/JPL-Caltech

The center of the Milky Way is home to a giant black hole, but new research suggests that it isn’t the only big player in the downtown core of our galaxy – massive magnetic fields also shape and drive the flows of gas there.

Continue reading “There are powerful magnetic fields at the core of the Milky Way, driven by the supermassive black hole”

Supermassive Black Hole Orbits an Even More Massive Black Hole, Crashing Through its Accretion Disk Every 12 Years

This image shows two massive black holes in the OJ 287 galaxy. The smaller black hole orbits the larger one, which is also surrounded by a disk of gas. When the smaller black hole crashes through the disk, it produces a flare brighter than 1 trillion stars. Credit: NASA/JPL-Caltech

NASA’s Spitzer Space Telescope may be retired, but the things it witnessed during its sixteen and a half year mission will be the subject of study for many years to come. For instance, Spitzer is the only telescope to witness something truly astounding occurring at the center of the distant galaxy OJ 287: a supermassive black hole (SMBH) orbited by another black hole that regularly passes through its accretion disk.

Whenever this happens, it causes a flash that is brighter than all the stars in the Milky Way combined. Using Spitzer‘s observations, an international team of astronomers was able to finally create a model that accurately predicts the timing of these flashes and the orbit of the smaller black hole. In addition to demonstrating General Relativity in action, their findings also provide validation to Stephen Hawking‘s “no-hair theorem.”

Continue reading “Supermassive Black Hole Orbits an Even More Massive Black Hole, Crashing Through its Accretion Disk Every 12 Years”