Two New Rocky Planets Discovered Close to the Solar System

An artist's illustration of two newly-discovered super-Earths. They're only 33 light years away and they orbit a red dwarf named HD 260655. Image Credit: NASA/JPL-Caltech

TESS has struck paydirt again. NASA’s planet-hunting spacecraft has found two new super-Earths orbiting a star only 33 light-years away. These are two of the closest rocky planets ever found.

Continue reading “Two New Rocky Planets Discovered Close to the Solar System”

What’s it Like Inside a Super-Earth?

This artist’s impression shows the planet orbiting the Sun-like star HD 85512 in the southern constellation of Vela (The Sail). This planet is one of sixteen super-Earths discovered by the HARPS instrument on the 3.6-metre telescope at ESO’s La Silla Observatory. This planet is about 3.6 times as massive as the Earth lis at the edge of the habitable zone around the star, where liquid water, and perhaps even life, could potentially exist. Credit: ESO

We know a ton about the inside of Earth. We know it has both an inner core and an outer core and that the churning and rotation create a protective magnetosphere that shields life from the Sun’s radiative power. It has a mantle, primarily solid but also home to magma. We know it has a crust, where we live, and plate tectonics that moves the continents around like playthings.

But what about Super-Earths? We know they’re out there; we’ve found them. What do we know about their insides? Earth’s structure, and its ability to support life, are shaped by the extreme pressure and density in its interior. The pressure and temperature inside Super-Earths are even more powerful. How does it shape these planets and affect their habitability?

Continue reading “What’s it Like Inside a Super-Earth?”

Rocky Planets Might Need to be the Right age to Support Life

This artist’s impression shows the planet orbiting the Sun-like star HD 85512 in the southern constellation of Vela (The Sail). This planet is one of sixteen super-Earths discovered by the HARPS instrument on the 3.6-metre telescope at ESO’s La Silla Observatory. This planet is about 3.6 times as massive as the Earth lis at the edge of the habitable zone around the star, where liquid water, and perhaps even life, could potentially exist. Credit: ESO

Extrasolar planets are being discovered at a rapid rate, with 4,531 planets in 3,363 systems (with another 7,798 candidates awaiting confirmation). Of these, 166 have been identified as rocky planets (aka. “Earth-like”), while another 1,389 have been rocky planets that are several times the size of Earth (“Super-Earths). As more and more discoveries are made, the focus is shifting from the discovery process towards characterization.

In order to place tighter constraints on whether any of these exoplanets are habitable, astronomers and astrobiologists are looking for ways to detect biomarkers and other signs of biological processes. According to a new study, astronomers and astrobiologists should look for indications of a carbon-silicate cycle. On Earth, this cycle ensures that our climate remains stable for eons and could be the key to finding life on other planets.

Continue reading “Rocky Planets Might Need to be the Right age to Support Life”

Astronomers Look at Super-Earths That had Their Atmospheres Stripped Away by Their Stars

Figure 1: Artist’s conceptual image showing the sizes of the planets observed in this study. The radius of TOI-1634 is 1.5 times larger than Earth’s radius and TOI-1685 is 1.8 times larger. The planets would appear red, due to the light from the red dwarf stars they orbit. (Credit: Astrobiology Center, NINS)

As the planets of our Solar System demonstrate, understanding the solar dynamics of a system is a crucial aspect of determining habitability. Because of its protective magnetic field, Earth has maintained a fluffy atmosphere for billions of years, ensuring a stable climate for life to evolve. In contrast, other rocky planets that orbit our Sun are either airless, have super-dense (Venus), or have very thin atmospheres (Mars) due to their interactions with the Sun.

In recent years, astronomers have been on the lookout for this same process when studying extrasolar planets. For instance, an international team of astronomers led by the National Astronomical Observatory of Japan (NAOJ) recently conducted follow-up observations of two Super-Earths that orbit very closely to their respective stars. These planets, which have no thick primordial atmospheres, represent a chance to investigate the evolution of atmospheres on hot rocky planets.

Continue reading “Astronomers Look at Super-Earths That had Their Atmospheres Stripped Away by Their Stars”

Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life

Artist's impression of the surface of a "Hycean" world. Credit: University of Cambridge

The search for planets beyond our Solar System (extrasolar planets) has grown by leaps and bounds in the past decade. A total of 4,514 exoplanets have been confirmed in 3,346 planetary systems, with another 7,721 candidates awaiting confirmation. At present, astrobiologists are largely focused on the “low hanging fruit” approach of looking for exoplanets that are similar in size, mass, and atmospheric composition to Earth (aka. “Earth-like.”)

However, astrobiologists are also interested in finding examples of “exotic life,” the kind that emerged under conditions that are not “Earth-like.” For example, a team of astronomers from the University of Cambridge recently conducted a study that showed how life could emerge on ocean-covered planets with hydrogen-rich atmospheres (aka. “Hycean” planets). These findings could have significant implications for exoplanet studies and the field of astrobiology.

Continue reading “Ocean Worlds With Hydrogen-Rich Atmospheres Could be the Perfect Spots for Life”

Larger Rocky Planets Might be Rare Because They Shrunk

Researchers at the Flatiron Institute’s Center for Computational Astrophysics published a paper last week that just might explain a mysterious gap in planet sizes beyond our solar system. Planets between 1.5 and 2 times Earth’s radius are strikingly rare. This new research suggests that the reason might be because planets slightly larger than this, called mini-Neptunes, lose their atmospheres over time, shrinking to become ‘super-Earths’ only slightly larger than our home planet. These changing planets only briefly have a radius the right size to fill the gap, quickly shrinking beyond it. The implication for planetary science is exciting, as it affirms that planets are not static objects, but evolving and dynamic worlds.

Continue reading “Larger Rocky Planets Might be Rare Because They Shrunk”

Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin

Credit and ©: MPIA/RenderArea

In the past two and a half decades, astronomers have confirmed the existence of thousands of exoplanets. In recent years, thanks to improvements in instrumentation and methodology, the process has slowly been shifting from the process of discovery to that of characterization. In particular, astronomers are hoping to obtain spectra from exoplanet atmospheres that would indicate their chemical composition.

This is no easy task since direct imaging is very difficult, and the only other method is to conduct observations during transits. However, astronomers of the CARMENES consortium recently reported the discovery of a hot rocky super-Earth orbiting the nearby red dwarf star. While being extremely hot, this planet has retained part of its original atmosphere, which makes it uniquely suited for observations using next-generation telescopes.

Continue reading “Gliese 486b is a Hellish World With Temperatures Above 700 Kelvin”

It's Starting to Look Like Super-Earths Really are Just Great big Terrestrial Planets

Artists’s impression of the rocky super-Earth HD 85512 b. Credit: ESO/M. Kornmesser

We’ve learned a thing or two about exoplanets in the past several years. One of the more surprising discoveries is that our solar system is rather unusual. The Sun’s worlds are easily divided into small rocky planets and large gas giants. Exoplanets are much more diverse, both in size and composition.

Continue reading “It's Starting to Look Like Super-Earths Really are Just Great big Terrestrial Planets”

Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable

An artist’s conception of the magnetic fields of selected super-Earths as the Z machine, pictured at bottom, mimics the gravitational conditions on other planets. Credits: Eric Lundin; Z photo by Randy Montoya

Deep inside planet Earth, there is a liquid outer core and a solid inner core that counter-rotate with each other. This creates the dynamo effect that is responsible for generating Earth’s planetary magnetic field. Also known as a magnetosphere, this field keeps our climate stable by preventing Earth’s atmosphere from being lost to space. So when studying rocky exoplanets, scientists naturally wonder if they too have magnetospheres.

Unfortunately, until we can measure an exoplanet’s magnetic fields, we are forced to infer their existence from the available evidence. This is precisely what researchers at the Sandia National Laboratories did with its Z Pulsed Power Facility (PPF). Along with their partners at the Carnegie Institution for Science, they were able to replicate the gravitational pressures of “Super-Earths” to see if they could generate magnetic fields.

Continue reading “Super-Earth Conditions Simulated in the Lab to Discover if They’re Habitable”

Heard of Mini-Neptunes and gas-Dwarfs? Here's a new one: sub-Earths

Several types of exoplanets. Credit: PHL @ UPR Arecibo

The planets in our solar system are broadly divided into two groups: small, rocky worlds like Earth, and large gas giants. Before the discovery of exoplanets, it was thought that our solar system was very typical. The light and heat of a star push the gas to the outer solar system, while heavier dust remains closer to the star. Thus a solar system has close rocky planets and distant gas giants. But we now know that planets and star systems have much more diversity.

Continue reading “Heard of Mini-Neptunes and gas-Dwarfs? Here's a new one: sub-Earths”