How Big is Rosetta’s Comet?

Pretty darn big, I’d say.

The illustration above shows the relative scale of the comet that ESA’s Rosetta and Philae spacecraft will explore “up-close and personal” later this year. And while it’s one thing to say that the nucleus of Comet 67P/Churyumov-Gerasimenko is about three by five kilometers in diameter, it’s quite another to see it in context with more familiar objects. Think about it — a comet as tall as Mt Fuji!

Artist's impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.
Artist’s impression (not to scale) of the Rosetta orbiter deploying the Philae lander to comet 67P/Churyumov–Gerasimenko. Credit: ESA–C. Carreau/ATG medialab.

At the time of this writing Rosetta is 35 days out on approach to Comet 67P/C-G, at a distance of about 51,000 km (31,700 miles) and closing. Three “big burn” maneuvers have already been performed between May 7 and June 4 to adjust the spacecraft’s course toward the incoming comet, and after smaller ones on June 18 and July 2 there are a total of five more to go. See details of Rosetta’s burn maneuvers here.

As incredibly sensitive as they are, Rosetta’s instruments — which were able to detect the water vapor coming from Comet 67P/C-G from a distance of over 360,000 km — have even sniffed the hydrazine exhaust from its own thruster burns.

Luckily the remaining burns are relatively small compared to the first three, with the final being very brief, so any data contamination by Rosetta’s own exhaust shouldn’t become an issue once the spacecraft has established orbit in August.

Read more: Rosetta’s Comet Already Sweating the Small Stuff

Launched in March 2004, ESA’s Rosetta mission will be the first to orbit and land a probe on a comet, observing its composition and behavior as it makes its close approach to the Sun in 2015. Click here to see where Rosetta is right now.

Source: ESA’s Rosetta blog

Note: While 3-5 km seems pretty big (especially when stood on end) comet nuclei can be much larger, 10 to 20 km in diameter up to the enormous 40+ km size of Hale-Bopp. As comets go, 67P/C-G is fairly average. (Except that, come August, it will be the only comet with an Earthly spacecraft in tow!)

Support a Good Cause To Win a Trip To Space

Well, technically not space*, but suborbital, and that’d still be way cool! And what’s even cooler is that you can enter to win a trip on an XCOR Lynx Mark II suborbital flight while helping to support a good cause of your choice, courtesy of The Urgency Network’s “Ticket to Rise” campaign. Check out the dramatic spaceflight-packed promotional video and find out how to enter below:

The Urgency Network is an online platform whereby participants can win experience-based prizes by participating in campaigns that are designed to aid and support good causes, many of which assist specific communities in need, awareness groups, and conservation efforts. You earn “entries” for prize drawings by purchasing gift packages from the participating foundations or by donating time, social media presence, or money directly. It’s a way for organizations that might not have (or be able to afford) a large PR department to get funded and gain widespread exposure. Learn more about The Urgency Network here.

In the Ticket to Rise campaign, the grand prize is beyond stratospheric — literally! One lucky winner will experience a ride aboard an XCOR Lynx Mark II suborbital craft, a single-stage space vehicle that takes off from a runway to ultimately coast briefly at a maximum altitude of 328,000 feet (about 100 km), experiencing 4 minutes of microgravity before re-entry and a runway landing. It’s a supersonic 30-minute flight to the very edge of space!

(*Actually, 100 km is right at the von Karman line, so riding the Lynx Mark II past that could qualify you as an astronaut. Just sayin’.)

How a Lynx Mark II flight works (Source: XCOR)
How a Lynx Mark II flight works (Source: XCOR)

Screen Shot 2014-06-26 at 12.53.52 PMAdd to that you’d be helping any one of dozens of good causes (you can choose from different ones by clicking the “Select a Different NonProfit” text link on the donation page) and it’s a win-win for everyone. And even if you don’t get a seat aboard a spaceship (many will enter, few will win) you can still get some pretty awesome promo offers from the organizations as bulk-entry packages.

Click here to sign up and enter the Ticket to Rise campaign.

The deadline to enter the campaign is 11:59:59 p.m. EDT August 11, 2014. Drawing will be held on August 12. The Lynx flight is dependent on meeting all requirements and passing physical exams and tests by XCOR Aerospace, and although the date is expected to be in the fall of 2015, this is rocket science and things change. Read the official contest rules for all details, fine print, etc.

Is NASA Dead? Not Even Close.

If you’re a frequent reader of Universe Today you know that, despite the end of the Shuttle program and the constant battle for a piece of the federal budget, NASA has a lot on their plate for future space exploration missions. But there are still a lot of people among the general public who think that the U.S. space administration is “dead,” or, at the very least, in the process of dying. Which is unfortunate because there’s actually a lot going on, both in space and in development on the ground.

The video above, released Monday by Johnson Space Center, shows highlights from 2013 as well as some of the many things NASA has in progress. As anyone can see, rumors of its death have been greatly exaggerated! (By whom I’m still not quite sure.)

Visit the Johnson Space Center site for more information and updates on current and future missions.

(Tip of the visor to astronaut Clayton Anderson for the video!)

ESA’s Gaia Mission Launches to Map the Milky Way

Early this morning, at 09:12 UTC, the cloudy pre-dawn sky above the coastal town of Kourou, French Guiana was brilliantly sliced by the fiery exhaust of a Soyuz VS06, which ferried ESA’s “billion-star surveyor” Gaia into space to begin its five-year mission to map the Milky Way.

Ten minutes after launch, after separation of the first three stages, the Fregat upper stage ignited, successfully delivering Gaia into a temporary parking orbit at an altitude of 175 km (108 miles). A second firing of the Fregat 11 minutes later took Gaia into its transfer orbit, followed by separation from the upper stage 42 minutes after liftoff. 46 minutes later Gaia’s sunshield was deployed, and the spacecraft is now cruising towards its target orbit around L2, a gravitationally-stable point in space located 1.5 million km (932,000 miles) away in the “shadow” of the Earth.

The launch itself was really quite beautiful, due in no small part to the large puffy clouds over the launch site. Watch the video below:

A global space astrometry mission, Gaia will make the largest, most precise three-dimensional map of our galaxy by surveying more than a billion stars over a five-year period.

“Gaia promises to build on the legacy of ESA’s first star-mapping mission, Hipparcos, launched in 1989, to reveal the history of the galaxy in which we live,” says Jean-Jacques Dordain, ESA’s Director General.

Soyuz VS06, with Gaia, lifted off from French Guiana, 19 December 2013. (ESA - S. Corvaja)
Soyuz VS06 with Gaia (ESA – S. Corvaja, 2013)

Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years. (That’s 40 million observations every day!) It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.

By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and, by watching them patiently over the whole mission, their motions across the sky.

The motions of the stars can be put into “rewind” to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into “fast forward” to learn more about its ultimate fate.

“Gaia represents a dream of astronomers throughout history, right back to the pioneering observations of the ancient Greek astronomer Hipparchus, who catalogued the relative positions of around a thousand stars with only naked-eye observations and simple geometry. Over 2,000 years later, Gaia will not only produce an unrivaled stellar census, but along the way has the potential to uncover new asteroids, planets and dying stars.”

– Alvaro Giménez, ESA’s Director of Science and Robotic Exploration

Gaia will make an accurate map of the stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)
Gaia will make an accurate map of a billion stars within the Milky Way from its location at L2 (ESA/ATG medialab; background: ESO/S. Brunier)

Of the one billion stars Gaia will observe, 99% have never had their distances measured accurately. The mission will also study 500,000 distant quasars, search for exoplanets and brown dwarfs, and will conduct tests of Einstein’s General Theory of Relativity.

“Along with tens of thousands of other celestial and planetary objects,” said ESA’s Gaia project scientist Timo Prusti, “this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.”

Follow the status of Gaia on the mission blog here.

Source: ESA press release and Gaia fact sheet

Gaia's launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA's facility in French Guiana (ESA)
Gaia’s launch aboard an Arianespace-operated Soyuz on Dec. 19, 2013 from ESA’s facility in French Guiana (ESA)

Astronomy Cast Ep. 326: Atmospheric Dust

When you consider the hazards of spaceflight, it’s hard to get worked up about dust bunnies. And yet, atmospheric dust is going to be one of the biggest problems astronauts will face when they reach the surface of other worlds. Where does this dust come from, and what does it tell us about the history of other worlds, and what can we do to mitigate the health risks?
Continue reading “Astronomy Cast Ep. 326: Atmospheric Dust”

Why Is Balancing So Hard After Spaceflights? Astronaut Posture Could Hold Clues

OTTAWA, CANADA – Astronauts appear to hold their heads more rigidly in relation to their trunks after returning to Earth from multi-month spaceflights, which may affect how they balance themselves back on Earth, according to ongoing research.

A note of caution: the sample size is small (six astronauts so far) and the research is still being conducted by the University of Houston and NASA. So this isn’t finalized in any sense. The early studies, however, shows that people returning to Earth may be changing their “strategy”, said Ph.D. student Stefan Madansingh.

“The changing strategy might put you at higher risks of falls as you ambulate around your environment, and if you are on Mars and you fall and break your hip, that is the start of a very bad day,” he said in a speech.

ESA astronaut Paolo Nespoli works with an experiment on board the International Space Station. Credit: NASA
ESA astronaut Paolo Nespoli works with an experiment on board the International Space Station. Astronauts find it harder to move around on Earth after several months working in the orbiting complex. Credit: NASA

Generally, NASA is interested in learning about changes in cardiovascular, balance and muscle function after six-month spaceflights or more, when they are “like spaghetti people,” Madansingh said. Over the years, astronauts have shown changes in inner eye pressure, bone density, muscles and their balance, among other things.

To obtain the information, NASA has had astronauts walking around a simple obstacle course, which they encourage astronauts to complete at a comfortable walking pace. They’ll weave around pylons, climb ladders and do other simple tasks.

Tests are performed at 180, 60 and 30 days before launch, then one, six and 30 days after landing. (In the shuttle era, astronauts would do these types of tests immediately after landing, but these days there’s a day-long flight from Kazakhstan before arriving in Houston.) Some tests are started from a lying position, and some from a sitting position.

Artist impression of an astronaut on Mars (NASA)
Artist impression of an astronaut on Mars (NASA)

It takes more time for astronauts to complete the obstacle course after coming back from space, Madansingh said, and his ongoing research looks at the relation between the head and trunk as the astronauts are doing so.

As controls, NASA uses bed rest subjects, who are people voluntarily spending 70 days in a head-down position without getting up once, even to go to the bathroom. “I think it’s absolutely bonkers,” Madansingh joked, but added that the bed rest subjects don’t show that same head-trunk changes that returning astronauts do. More research will be needed to learn why, he said.

NASA is putting particular emphasis on these studies as astronauts spend longer times in space. The first one-year International Space Station stay is scheduled for 2015, although some cosmonauts have spent a year or more on the Russian space station Mir.

Madansingh delivered his comments Nov. 15 at the Canadian Space Society annual conference in Ottawa.

Navigating the Cosmos by Quasar

50 million light-years away a quasar resides in the hub of galaxy NGC 4438, an incredibly bright source of light and radiation that’s the result of a supermassive black hole actively feeding on nearby gas and dust (and pretty much anything else that ventures too closely.) Shining with the energy of 1,000 Milky Ways, this quasar — and others like it — are the brightest objects in the visible Universe… so bright, in fact, that they are used as beacons for interplanetary navigation by various exploration spacecraft.

“I must go down to the seas again, to the lonely sea and the sky,
And all I ask is a tall ship and a star to steer her by.”
– John Masefield, “Sea Fever”

Deep-space missions require precise navigation, especially when approaching bodies such as Mars, Venus, or comets. It’s often necessary to pinpoint a spacecraft traveling 100 million km from Earth to within just 1 km. To achieve this level of accuracy, experts use quasars – the most luminous objects known in the Universe – as beacons in a technique known as Delta-Differential One-Way Ranging, or delta-DOR.

How delta-DOR works (ESA)
How delta-DOR works (ESA)

Delta-DOR uses two antennas in distant locations on Earth (such as Goldstone in California and Canberra in Australia) to simultaneously track a transmitting spacecraft in order to measure the time difference (delay) between signals arriving at the two stations.

Unfortunately the delay can be affected by several sources of error, such as the radio waves traveling through the troposphere, ionosphere, and solar plasma, as well as clock instabilities at the ground stations.

Delta-DOR corrects these errors by tracking a quasar that is located near the spacecraft for calibration — usually within ten degrees. The chosen quasar’s direction is already known extremely well through astronomical measurements, typically to closer than 50 billionths of a degree (one nanoradian, or 0.208533 milliarcsecond). The delay time of the quasar is subtracted from that of the spacecraft’s, providing the delta-DOR measurement and allowing for amazingly high-precision navigation across long distances.

“Quasar locations define a reference system. They enable engineers to improve the precision of the measurements taken by ground stations and improve the accuracy of the direction to the spacecraft to an order of a millionth of a degree.”

– Frank Budnik, ESA flight dynamics expert

So even though the quasar in NGC 4438 is located 50 million light-years from Earth, it can help engineers position a spacecraft located 100 million kilometers away to an accuracy of several hundred meters. Now that’s a star to steer her by!

Read more about Delta-DOR here and here.

Source: ESA Operations

An Unexpected Ending for Deep Impact

After almost 9 years in space that included an unprecedented July 4th impact and subsequent flyby of a comet, an additional comet flyby, and the return of approximately 500,000 images of celestial objects, NASA’s Deep Impact/EPOXI mission has officially been brought to a close.

The project team at NASA’s Jet Propulsion Laboratory has reluctantly pronounced the mission at an end after being unable to communicate with the spacecraft for over a month. The last communication with the probe was Aug. 8. Deep Impact was history’s most traveled comet research mission, having journeyed a total of about 4.7 billion miles (7.58 billion kilometers).

“Deep Impact has been a fantastic, long-lasting spacecraft that has produced far more data than we had planned,” said Mike A’Hearn, the Deep Impact principal investigator at the University of Maryland in College Park. “It has revolutionized our understanding of comets and their activity.”

Artist's rendering of the Deep Impactor flyby spacecraft (NASA)
Artist’s rendering of the Deep Impactor flyby spacecraft (NASA)

Launched in January 2005, the spacecraft first traveled about 268 million miles (431 million kilometers) to the vicinity of comet Tempel 1. On July 3, 2005, the spacecraft deployed an impactor into the path of comet to essentially be run over by its nucleus on July 4. This caused material from below the comet’s surface to be blasted out into space where it could be examined by the telescopes and instrumentation of the flyby spacecraft.  Sixteen days after that comet encounter, the Deep Impact team placed the spacecraft on a trajectory to fly back past Earth in late December 2007 to put it on course to encounter another comet, Hartley 2 in November 2010, thus beginning the spacecraft’s new EPOXI mission.

“Six months after launch, this spacecraft had already completed its planned mission to study comet Tempel 1,” said Tim Larson, project manager of Deep Impact at JPL. “But the science team kept finding interesting things to do, and through the ingenuity of our mission team and navigators and support of NASA’s Discovery Program, this spacecraft kept it up for more than eight years, producing amazing results all along the way.”

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. Along the way, it also observed six different stars to confirm the motion of planets orbiting them, and took images and data of the Earth, the Moon and Mars. These data helped to confirm the existence of water on the Moon, and attempted to confirm the methane signature in the atmosphere of Mars.  One sequence of images is a breathtaking view of the Moon transiting across the face of Earth.

This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI  spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.
This image of comet ISON C/2012 S1 from NASA’s Deep Impact/EPOXI spacecraft clearly shows the coma and nucleus on Jan. 17 and 18, 2013 beyond the orbit of Jupiter. Credit: NASA.

The spacecraft’s extended mission culminated in the successful flyby of comet Hartley 2 on Nov. 4, 2010. In January 2012, Deep Impact performed imaging and accessed the composition of distant comet C/2009 P1 (Garradd).

It took images of comet ISON this year and collected early images of comet ISON in June.

After losing contact with the spacecraft last month, mission controllers spent several weeks trying to uplink commands to reactivate its onboard systems. Although the exact cause of the loss is not known, analysis has uncovered a potential problem with computer time tagging that could have led to loss of control for Deep Impact’s orientation. That would then affect the positioning of its radio antennas, making communication difficult, as well as its solar arrays, which would in turn prevent the spacecraft from getting power and allow cold temperatures to ruin onboard equipment, essentially freezing its battery and propulsion systems.

Without battery power, the Deep Impact spacecraft is now adrift and silent, spinning out of control through the solar system.

Launch of Deep Impact aboard a Boeing Delta II from Cape Canaveral AFB on Jan. 12, 2005 (NASA)
Launch of Deep Impact aboard a Boeing Delta II rocket from Cape Canaveral AFS on Jan. 12, 2005 (NASA)

“Despite this unexpected final curtain call, Deep Impact already achieved much more than ever was envisioned. Deep Impact has completely overturned what we thought we knew about comets and also provided a treasure trove of additional planetary science that will be the source data of research for years to come.”

– Lindley Johnson, Program Executive for the Deep Impact mission

It’s a sad end for a hardworking spacecraft, but over the course of its 8 1/2 years in space Deep Impact provided many significant results for the science community. Here are the top five, according to the mission’s principal investigator Michael A’Hearn.

Read more about the Deep Impact mission here.

Source: NASA press release

How to Spot the Antares Launch from NASA Wallops on Wednesday

A space launch marking a new era is departing from the Virginia coast this Wednesday evening, and if you live anywhere along a wide area of the US Eastern seaboard, you’ll have a great opportunity to witness the launch with your own eyes. Here’s all the information you’ll need to see it, plus some tips for capturing it with your camera.

Orbital Sciences’ Antares rocket will launch from Pad 0A at NASA’s Mid-Atlantic Regional Spaceport based on Wallops Island, Virginia. This will mark not only the first launch of Antares, but the first orbital launch of a liquid-fueled rocket from Wallops. The launch window runs from 5:00 to 8:00 PM EDT (21:00-24:00 UT).

There were some concerns when a technical anomaly shutdown a “Wet Dress Rehearsal” test this weekend at T-16 minutes, but Orbital Sciences has stated that the problems have been resolved and the launch is pressing ahead as planned.

Space shots are a familiar sight to the residents of the Florida Space Coast, but will provide a unique show for residents of the U.S. central Atlantic region. The launch of Antares from Wallops will be visible for hundreds of miles and be over 10° above the horizon for an arc spanning from Wilmington, North Carolina to Washington D.C. and north to the New York City tri-state area as it heads off to the southeast. Antares is a two stage rocket with a 1st stage liquid fueled engine and a solid-fueled 2nd stage. The primary mission for Wednesday’s Antares A-One flight will be to demonstrate the ability for the Antares rocket to place a payload into orbit. If all goes well, Orbital Sciences will join SpaceX this summer in the select club of private companies with the ability provide cargo delivery access to the International Space Station in Low Earth Orbit.

Antares heads to orbit. Artist's concept. (Credit: Orbital Sciences Corperation).
Antares heads to orbit. Artist’s concept. (Credit: Orbital Sciences Corporation).

Antares will deploy a dummy mass simulating the Cygnus module. Also onboard are the Phonesat-1a, -1b, and -1c micro-cubesats and the Dove 1 satellite.

Be sure to watch for the launch of Antares if you live in the region. Find a spot with a low uncluttered eastern horizon and watch from an elevated rooftop or hilltop location if possible. I live a hundred miles west of Cape Canaveral and I’ve followed launches all the way through Main Engine Cutoff and first stage separation with binoculars.

Be sure to also follow the launch broadcast live for any last minute delays via NASA TV or Universe Today will have a live feed as well. Antares is aiming to put the Cygnus test mass in a 250 x 300 kilometre orbit with a 51.6° inclination. This is similar to what will be necessary to head to the ISS, but this week’s launch will not be trailing the ISS in its path. This also means that the launch window can be extended over three hours rather than having to be instantaneous.

If the launch goes at the beginning of the window, the local sun angle over the launch facility will be 30° to the west. Sunset at Wallops on the evening of April 17th occurs at 7:41PM EDT, meaning we could be in for a photogenic dusk launch of Antares if it stretches to the end of the target window.

And speaking of which, a pre-sunset launch means short daytime exposure settings for photography. Be prepared to switch over for dusk conditions if the launch extends into the end of the window. Conditions during twilight can change almost moment-to-moment. One of the most memorable launches we witnessed was the pre-dawn liftoff of STS-131 on April 5th, 2010:

The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).
The predawn launch of STS-131 as seen from 100 miles west. (Photo by author).

Once in orbit, the launch of Antares should generate four visible objects; the test mass payload, the two clam-shell fairings, and the stage two booster. This configuration is similar to a Falcon 9/Dragon launch, minus the solar panel covers. These objects should be visible to the naked eye at magnitudes +3 to +5. The cubesat payloads are tiny and below the threshold of naked eye visibility.

Preliminary visibility for the objects will favor latitudes 0-30° north at dusk to 10-40° at dawn. Keep in mind these predictions could change as the launch window evolves. The next NORAD tracking ID in the queue is 2013-015A. Yesterday’s launch of Anik G1 from Baikonur was just cataloged today as 2013-014A plus associated hardware. The weather is forecast to be 45% “go” for tomorrow’s launch. In the event of a scrub, the next launch window for Antares is April 18-21st.

First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00UT on April 17th. (Created by the author using Orbitron. TLEs courtesy of (name)
First orbit of the Cygnus test mass; shadow orientation of the Earth assumes a nominal launch at 22:00 UT on April 17th. (Created by the author using Orbitron. Two-Line Elements courtesy of Henry Hallam).

It’ll be exciting to follow this first flight of Antares and its first scheduled mission to the International Space Station this summer. Also watch for the first ever lunar mission to depart Wallops on August 12 with the launch of the Lunar Atmosphere and Dust Environment Explorer (LADEE).

Finally, if you’ve got a pass of the International Space Station this week, keep an eye out for Progress M-17M currently about 10 minutes ahead of the station in its orbit. The unmanned Progress vehicle just undocked yesterday from the station and will be conducting a series of experiments monitoring the interactions of its thrusters with the ionosphere before burning up on reentry over the South Pacific on April 21st.

A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).
A pass of the ISS over UK tonite (April 16th) with Progress leading at 20:30UT. (Created by the author in Orbitron).

The ISS and more can be tracked using Heavens-Above. Also, we’ll be tweeting all of the updates and orbital action as it evolves as @Astroguyz. Let us know of those launch sightings both near and far. It’ll be interesting to see what, if any, impact launches visible to a large portion of the U.S. population will have on the public’s perception of spaceflight. Be sure to look up tomorrow night!

Morpheus Lander Crashes and Burns

NASA’s “lean and green” Morpheus lander crashed and burned during a free flight test at Kennedy Space Center today, August 9, at approximately 12:46 pm EDT.

Watch a video of the failed test after the jump:


Designed in-house at Johnson Space Center, the Morpheus lander is engineered to use a liquid oxygen and methane fuel — relatively cheap materials that can be stored easily and would be available resources on other worlds besides Earth.

Morpheus’ first successful tethered flight had just occurred a few days earlier, on August 3.

It IS still rocket science, after all…

Images: NASA TV