U.S. To Restart Plutonium Production for Deep Space Exploration

A marshmellow-sized Pu-238 pellet awaits a space mission. (Credit: The Department of Energy).

The end of NASA’s plutonium shortage may be in sight. On Monday March 18th,  NASA’s planetary science division head Jim Green announced that production of Plutonium-238 (Pu-238) by the United States Department of Energy (DOE) is currently in the test phases leading up to a restart of full scale production.

“By the end of the calendar year, we’ll have a complete plan from the Department of Energy on how they’ll be able to satisfy our requirement of 1.5 to 2 kilograms a year.” Green said at the 44th Lunar and Planetary Science Conference being held in Woodlands, Texas this past Monday.

This news comes none too soon. We’ve written previously on the impending Plutonium shortage and the consequences it has for future deep space exploration. Solar power is adequate in most cases when you explore the inner solar system, but when you venture out beyond the asteroid belt, you need nuclear power to do it.

Production of the isotope Pu-238 was a fortunate consequence of the Cold War.  First produced by Glen Seaborg in 1940, the weapons grade isotope of plutonium (-239) is produced via bombarding neptunium (which itself is a decay product of uranium-238) with neutrons. Use the same target isotope of Neptunium-237 in a fast reactor, and Pu-238 is the result. Pu-238 produces 280x times the decay heat at 560 watts per kilogram versus weapons grade Pu-239  and is ideal as a compact source of energy for deep space exploration.

Since 1961, over 26 U.S. spacecraft have been launched carrying Multi-Mission Radioisotope Thermoelectric Generators (MMRTG, or formerly simply RTGs) as power sources and have explored every planet except Mercury. RTGs were used by the Apollo Lunar Surface Experiments Package (ALSEP) science payloads left on by the astronauts on the Moon, and Cassini, Mars Curiosity and New Horizons enroute to explore Pluto in July 2015 are all nuclear powered.

Plutonium powered RTGs are the only technology that we have currently in use that can carry out deep space exploration. NASA’s Juno spacecraft will be the first to reach Jupiter in 2016 without the use of a nuclear-powered RTG, but it will need to employ 3 enormous 2.7 x 8.9 metre solar panels to do it.

The plutonium power source inside the Mars Science Laboratory's MMRTG during assembly at the Idaho National Laboratory. (Credit: Department of Energy?National Laboratory image under a Creative Commons Generic Attribution 2.0 License).
The plutonium power source inside the Mars Science Laboratory’s MMRTG during assembly at the Idaho National Laboratory. (Credit: Department of Energy/Idaho National Laboratory image under a Creative Commons Generic Attribution 2.0 License).

The problem is, plutonium production in the U.S. ceased in 1988 with the end of the Cold War. How much Plutonium-238 NASA and the DOE has stockpiled is classified, but it has been speculated that it has at most enough for one more large Flag Ship class mission and perhaps a small Scout class mission. Plus, once weapons grade plutonium-239 is manufactured, there’s no re-processing it the desired Pu-238 isotope. The plutonium that currently powers Curiosity across the surface of Mars was bought from the Russians, and that source ended in 2010. New Horizons is equipped with a spare MMRTG that was built for Cassini, which was launched in 1999.

Technicians handle an RTG at the Payload Hazardous Servicing Facility at the Kennedy Space Center for the Cassini spacecraft. (Credit: NASA).
Technicians handle an RTG at the Payload Hazardous Servicing Facility at the Kennedy Space Center for the Cassini spacecraft. (Credit: NASA).

As an added bonus, plutonium powered missions often exceed expectations as well. For example, the Voyager 1 & 2 spacecraft had an original mission duration of five years and are now expected to continue well into their fifth decade of operation. Mars Curiosity doesn’t suffer from the issues of “dusty solar panels” that plagued Spirit and Opportunity and can operate through the long Martian winter. Incidentally, while the Spirit and Opportunity rovers were not nuclear powered, they did employ tiny pellets of plutonium oxide in their joints to stay warm, as well as radioactive curium to provide neutron sources in their spectrometers. It’s even quite possible that any alien intelligence stumbles upon the five spacecraft escaping our solar system (Pioneer 10 & 11, Voyagers 1 & 2, and New Horizons) could conceivably date their departure from Earth by measuring the decay of their plutonium power source. (Pu-238 has a half life of 87.7 years and eventually decays after transitioning through a long series of daughter isotopes into lead-206).

New Horizons in the Payload Hazardous Servicing Facility at the Kennedy Space Center. Note the RTG (black) protruding from the spacecraft. (Credit: NASA/Uwe W.)
New Horizons in the Payload Hazardous Servicing Facility at the Kennedy Space Center. Note the RTG (black) protruding from the spacecraft. (Credit: NASA/Uwe W.)

The current production run of Pu-238 will be carried out at the Oak Ridge National Laboratory (ORNL) using its High Flux Isotope Reactor (HFIR). “Old” Pu-238 can also be revived by adding newly manufactured Pu-238 to it.

“For every 1 kilogram, we really revive two kilograms of the older plutonium by mixing it… it’s a critical part of our process to be able to utilize our existing supply at the energy density we want it,” Green told a recent Mars exploration planning committee.

Still, full target production of 1.5 kilograms per year may be some time off. For context, the Mars rover Curiosity utilizes 4.8 kilograms of Pu-238, and New Horizons contains 11 kilograms. No missions to the outer planets have left Earth since the launch of Curiosity in November 2011, and the next mission likely to sport an RTG is the proposed Mars 2020 rover. Ideas on the drawing board such as a Titan lake lander and a Jupiter Icy Moons mission would all be nuclear powered.

Engineers perform a fit check of the MMRTG on Curiousity at the Kennedy Space Center. The final installation of the MMRTG occured the evening prior to launch. (Credit: NASA/Cory Huston).
Engineers perform a fit check of the MMRTG on Curiosity at the Kennedy Space Center. The final installation of the MMRTG occurred the evening prior to launch. (Credit: NASA/Cory Huston).

Along with new plutonium production, NASA plans to have two new RTGs dubbed Advanced Stirling Radioisotope Generators (ASRGs) available by 2016. While more efficient, the ASRG may not always be the device of choice. For example, Curiosity uses its MMRTG waste heat to keep instruments warm via Freon circulation.  Curiosity also had to vent waste heat produced by the 110-watt generator while cooped up in its aero shell enroute to Mars.

Cutaway diagram of the Advanced Stirling Radioisotope Generator. (Credit: DOE/NASA).
Cutaway diagram of the Advanced Stirling Radioisotope Generator. (Credit: DOE/NASA).

And of course, there are the added precautions that come with launching a nuclear payload. The President of the United States had to sign off on the launch of Curiosity from the Florida Space Coast. The launch of Cassini, New Horizons, and Curiosity all drew a scattering of protesters, as does anything nuclear related. Never mind that coal fired power plants produce radioactive polonium, radon and thorium as an undesired by-product daily.

An RTG (in the foreground on the pallet) left on the Moon by astronauts during Apollo 14.  (Credit: NASA/Alan Shepard).
An RTG (in the foreground on the pallet) left on the Moon by astronauts during Apollo 14. (Credit: NASA/Alan Shepard).

Said launches aren’t without hazards, albeit with risks that can be mitigated and managed. One of the most notorious space-related nuclear accidents occurred early in the U.S. space program with the loss of an RTG-equipped Transit-5BN-3 satellite off of the coast of Madagascar shortly after launch in 1964. And when Apollo 13 had to abort and return to Earth, the astronauts were directed to ditch the Aquarius Landing Module along with its nuclear-powered science experiments meant for the surface of the Moon in the Pacific Ocean near the island of Fiji. (They don’t tell you that in the movie) One wonders if it would be cost effective to “resurrect” this RTG from the ocean floor for a future space mission. On previous nuclear-equipped launches such as New Horizons, NASA placed the chance of a “launch accident that could release plutonium” at 350-to-1 against  Even then, the shielded RTG is “over-engineered” to survive an explosion and impact with the water.

But the risks are worth the gain in terms of new solar system discoveries. In a brave new future of space exploration, the restart of plutonium production for peaceful purposes gives us hope. To paraphrase Carl Sagan, space travel is one of the best uses of nuclear fission that we can think of!

Dennis Tito Wants to Send Human Mission to Mars in 2018

Image of Mars from Mars Express. Credit: ESA

According to a press release posted on SpaceRef and NASAWatch, Dennis Tito — the first-ever space tourist — is planning to send a human mission to Mars in January 2018 on a round-trip journey lasting 501 days. The trip would be timed to take advantage of the launch ‘window’ when Mars and Earth reach a position in their respective orbits that offers the best trajectory between the two planets.

Reportedly, Tito has created a new nonprofit company called the Inspiration Mars Foundation to facilitate the mission. The mission is intended to “generate new knowledge, experience and momentum for the next great era of space exploration.”

(2/21/13 13:00 UTC) We have an update on this news below:

Tito, along with several other notable people from the space community will provide more information in a press conference set for Wednesday, February 27th. Also at the press conference will be Taber MacCallum and Jane Poynter who were members of the Biosphere-2 project, and who are with the Paragon Space Development Corporation, which creates life-support systems, and Jonathan Clark, a medical researcher at the National Space Biomedical Research Institute, who may discuss the dangers from radiation to humans in deep space. The press conference will be moderated by journalist Miles O’Brien.

Tito paid about $20 million to visit the International Space Station in 2001.

Another endeavor, the Mars One project, wants to create a human settlement on Mars by 2023.

UPDATE:
Spaceflight expert Jeff Foust did a some digging, and posted some insights about this story in his NewSpace Journal. Foust obtained a copy of a paper Tito plans to present at the IEEE Aerospace Conference in March, which discusses conference, a crewed free-return Mars mission that would fly by Mars – no going into orbit or landing. Such a 501-day mission would launch in January 2018, “using a modified SpaceX Dragon spacecraft launched on a Falcon Heavy rocket,” Foust writes. “According to the paper, existing environmental control and life support system (ECLSS) technologies would allow such a spacecraft to support two people for the mission, although in Spartan condition. ‘Crew comfort is limited to survival needs only. For example, sponge baths are acceptable, with no need for showers,’ the paper states.”

One of the paper’s co-authors is NASA Ames director Pete Worden, the paper outlines how NASA would also have a role in this mission in terms of supporting key life support and thermal protection systems, even though this is a private-sector effort. No estimates of what such a mission would cost are included in the paper, but it does say it would be financed privately. The paper adds that if they miss this favorable 2018 opportunity, the next chance to take advantage of this lower energy trajectory would be in 2031.

Read more in Foust’s NewSpace Journal.

We’ll provide more information when it becomes available.

Q & A with Astronaut Jerry Ross, Record-Setting Frequent Space Flyer

Jerry Ross peers into the orbiter crew cabin during the STS-37 mission, smiling because he manually extending the Gamma Ray Observatory’s antenna. Credit: NASA

If there was a frequent flyer program for astronauts, Jerry Ross would be a gold status member. Ross is a veteran of seven space shuttle missions, making him a co-record holder for most spaceflights with fellow former NASA astronaut Franklin Chang-Diaz, and with nine spacewalks, he has the second most EVAs by a NASA astronaut. He is one of only three astronauts to have served throughout the entire Space Shuttle Program. Ross has written a new book about his life and career as an astronaut, “Spacewalker: My Journey in Space and Faith as NASA’s Record-Setting Frequent Flyer.” This is the first time he has told his story, reflecting on the legacy of the Shuttle program, its highs and lows, and the future of manned space flight.

Ross talked with Universe Today about his experiences and his new book. (Find out how you can win a copy of the book here.)

Universe Today: What made you decide to write a book about your experiences?

Jerry Ross: I wanted to share my experiences of what it was like to suit up to go out on a spacewalk and also help people understand what it is like to be an astronaut, that we are regular people who do regular work most of the time and only get to fly in space once in a while. In addition I wanted to entertain a little, use some funny stories that I had told many times to my friends when we were down at the Cape waiting for a launch, and a lot of times people would say, ‘those are great stories, you ought to write a book.’ After more and more people said that I started to take it a little more seriously.

Additionally I wrote it for my granddaughters who were young enough while I was still flying in space to not remember much, and in fact the youngest one was born after I had completed my flying. But probably the most important reason is that throughout my astronaut career I made a point that while I was talking with young students about their lives and what they could do with their God-given talents and capabilities, that they should dream large, study hard and work hard to reach their goals and not give up too easily. Throughout many of my talks over the years at schools, I have used my own career as a way of pointing out to them that, yeah, you are going to have some setbacks, your life won’t go in a straight line. You’ll have to study hard and work hard but you don’t have to be a straight-A student. And don’t give up too easily on what your goals are. I am one of the very fortunate ones who was able realize very early in my life what I wanted to do. I was able to set those goals and was able to achieve them, and what happened in my life was so much better than I could have dreamed about!

Jerry Ross, frequent flying astronaut. Credit: NASA
Jerry Ross, frequent flying astronaut. Credit: NASA.

UT: You are obviously very dedicated to NASA. How does it feel to have the spaceflight records you have, and to have been a part the agency that is such an iconic part of America?

JR: The records are a byproduct of the what I said before; working hard and not giving up. I am and I was very dedicated to what our country was doing in space but I am somewhat frustrated that we are not doing more now. The records are quite frankly something that I wish I could have pushed much higher. I would have hoped to have flown many more times and done more spacewalks as well. Frankly, I’m disappointed that my records haven’t fallen and that those records aren’t continuing to be broken.

If we’re not continuing to push forward in space and do things more routinely and more aggressively, then as a country we are failing to be the leaders of the world that we should be in terms of leading humankind further into the Universe, learning more about the Universe and about ourselves, and potentially being able to live on other planets someday. While the records are nice — and it is kind of nice to put that in your bio that you hold the world record — it is not something that I hang onto, and like I said, I hope we will get back into a much more aggressive program that will push more people into space faster and farther.

Jerry Ross suits up for the STS-74 mission in 1995. Credit: NASA.
Jerry Ross suits up for the STS-74 mission in 1995. Credit: NASA.

UT: Do you have a favorite mission or favorite moment that you cherish from all your spaceflights?

JR: That question is just like asking a mother which one of her seven children she likes best! Every one of my flights was unique and different. All of them were a lot of fun with great crews and great missions. If I had to pick one, it would probably be the first flight, just because it was my first. It was an exciting mission, a great crew and I got to go on my first spacewalk, which laid the foundation for even more spacewalks in the future. At the time I launched I was already assigned to another mission, so it was a great time in my career when I was still fairly young but was really starting to feel the success of all the hard work.

UT: What was the most unexpected thing or experience you had?

JR: I think the most unexpected thing — and I talk about it in the book — is the epiphany I had on my fourth spacewalk on my third space shuttle mission when I was high above the payload on a foot restraint on the end of the robotic arm. The rest of the crew was concentrating on working with (astronaut) Jay Asp who was doing some work in the payload bay. I had the chance to look into deep space. It was at night and I turned off my helmet-mounted lights and just looked at the Universe and the uncountable number of stars out there. And all of a sudden I had this sense come over me — it was totally unexpected, it wasn’t something I was thinking about or contemplating — but it was a sense that I was doing what God had intended me to do, being in space in a spacesuit, working to fix satellites and assemble things in space. What a reassurance that you picked the right path, and that you are doing exactly what you were intended to do!

For an engineer to have any feelings at all, and especially a feeling like that traveling at 5 miles a second above the Earth is pretty incredible.

UT: I really enjoyed the sidebar pieces in the book that were written by the people important in your life – your friend Jim, and your wife and children. How did you decide to include that, and did you have any trouble convincing them to be a part of the book?

JR: The book started out with John Norberg, my co-writer, coming down and doing a series of interviews with me and also with my family members and my best friend Jim Gentleman, and one of my two sisters in Indiana. Initially, John was going to write more of the book than it ended up being. It was a much more collaborative effort than I had anticipated. But those sidebars or insights from others was totally his idea and one that I entirely latched onto once we started writing. I think it is a great insight into the rest of the family and how we operated as a family. I’ve had this comment multiple times now from folks that these additional insights were especially enjoyable.

Jerry Ross works on the International Space Station during the STS-110 mission in 2002. Credit: NASA
Jerry Ross works on the International Space Station during the STS-110 mission in 2002. Credit: NASA

UT: Your daughter Amy also works at NASA, and has helped to create better gloves for spacewalking. How gratifying is that to have her be a part of NASA?

JR: I think any parent is pleased if one of their children decides to follow in their footsteps. I guess that somehow validates that what the parent has been doing was something they valued and thought was interesting and exciting. Amy was exposed to it and was never encouraged one way or the other to be part of NASA or not, so it was very satisfying to see her do that. It was equally gratifying for me for my wife Karen to get into the space program working for United Space Alliance as one of the support contractors, and as you read in the book she helped supply the food for the shuttle and the station.

You also might be interested to know that Amy was interviewed for the astronaut program in January. For this selection process they had around 6,000 people who applied and they narrowed it down to about 400 that they deemed most qualified, and from that 400 they brought in 120, and she made that cut.

Amy Ross is an advanced space suit designer at NASA's Johnson Space Center. Image Credit: NASA.
Amy Ross is an advanced space suit designer at NASA's Johnson Space Center. Image Credit: NASA.

They will further reduce the number down to about 50 that will be brought back in for a second round of additional interviews and screenings, mostly some fairly heavy medical testing, and then from that they will select about 10 or so in the middle of the year. So we are extremely excited for her and keeping our fingers crossed.

UT: You write in detail about the two shuttle accidents. How difficult were those two periods of time – both personally and for everyone in the astronaut office?

JR: It was a tremendous loss. The astronaut office is relatively small. At the time of those losses, we were in the neighborhood of about 100 people total, and you get to know folks pretty well. To have your friends doing what we all enjoyed and seeing them be lost and then learning that probably, had we been smarter or more diligent, we as an agency could have prevented both of those accidents. That is very hurtful.

You go through a lot of soul searching, especially after the Challenger accident when we were still very early in the shuttle program to lose a vehicle and friends that way. My family was still quite young and it makes you really do some soul searching about whether or not you should continue to do that and put your life and therefore your family at risk. We talked about it quite a bit as a family and fortunately we all agreed that it would be letting our friends down if we decided to pull out and go do something else.

Jerry Ross during the  STS-110 mission in 2002, coming through one of the many hatches on the International Space Station. Credit: NASA.
Jerry Ross during the STS-110 mission in 2002, coming through one of the many hatches on the International Space Station. Credit: NASA.

UT: You mentioned this earlier, and you don’t mince words in the book about your disappointment with the direction NASA is going. Have your thoughts changed any about the SLS?

JR: No, I still think that the agency is wandering in the forest. Most of the direction that we are getting from Congress is the direction that reinstituted the SLS and is pushing Orion forward. The administration is really pushing the commercial space aspect, and it still makes me very nervous that the commercial space guys may not pan out. It makes me nervous that NASA won’t have more control and insight on what is going on with the vehicles, from both a safety and operational perspective. It makes me nervous that we are planning to rely up on them solely to get to and from low Earth orbit, when in fact if they have an accident either with one of our crews or theirs, it could precipitate a lawsuit, which might put them into bankruptcy. Where would we be then?

So there are lots of reasons why I don’t think this is the right answer. I totally agree with commercial space if they want to go spend their own nickel and go do things, that is fine. As a government agency I think we should provide all the help and assistance that we can, but at the same time I don’t think we should be diverting resources of NASA’s programs to be paying for theirs. And that is what we are doing right now.

If we had not stopped the Constellation program, we would be in the process of getting ready to go launch an Orion right now. So what we are doing is delaying progress for the nation and what is going to happen in respect to commercial space is not at all certain. I frankly do not see any business model that would keep any of those commercial systems operating without a great underwriting and usage by NASA. And so I don’t see the logic in what is going on.

UT: Your faith is obviously very important to you, and I recall the one line you wrote, that you find it impossible to believe that everything you saw from space was created without God. In some circles, it seems to be that it is either science or religion that the two are hard to mix. But you obviously have no problem mixing the two in your life.

JR: Absolutely. I have had no problems along those lines whatsoever. I think the problems come when people try to read too literally passages in the Bible, and to not to just accept God on faith. So, somehow I think people try to limit God by reading an exact passage in the Bible, in a certain kind of Bible, when in fact the passage would read quite differently depending on what kind of Bible you are reading.

UT: Is there anything else that you feel is important for people to know about your book or your experiences in general?

JR: I hope people will read the book and enjoy it, number one! Secondly I hope they will get a better understanding of what it takes to make a spaceflight happen. But probably the most important thing is that I hope that it might help young adults and school age children interested in science and engineering. But the main emphasis of the book is to set goals for yourself, study hard, work hard and don’t give up too easily.

UT: Jerry, its been an honor to talk with you! Thank you very much.

JR: I’ve enjoyed it, thank you!

Jerry Ross on the end of the space shuttle's RMS during STS-61B in 1985, demonstrating the feasibility of assembling structures in space. Credit: NASA.

The Cost of Exploring Space: Film vs. Reality

We all know that space exploration, while certainly not the largest expenditure of most countries, doesn’t come cheap. But neither do big-budget science fiction films, either. Special effects, sets, special effects, popular acting talent… special effects… those all come with hefty price tags that make sci-fi and fantasy films costly ventures — although bigger definitely isn’t always better. If you were to compare the price of real space exploration missions (which provide actual information) to the costs of movies about space exploration (which provide “only” entertainment) what would you expect to find?

This infographic does just that:

exploring-space-720

“Prometheus’ movie budget would be enough to keep the search for real aliens going for another 52 years.”

Wow. (Maybe they should have just written a check to SETI.)

Infographic provided by Neo Mammalian Studios and paydayloan.co.uk. U.S.S. Enterprise © CBS Studios Inc. All Rights Reserved.

New Study Shows Cosmic Rays Could Cause Alzheimer’s

Humans explore Mars in “Distant Shores,” an illustration by NASA artist Pat Rawlins

Cosmic rays from deep space could pose serious health risks to future astronauts on long-duration missions to Mars — even bringing on the memory-destroying symptoms of Alzheimer’s disease, according to the results of a new study from the University of Rochester Medical Center.

While NASA has its sights set on the human exploration of Mars within the next several decades, even with the best propulsion technology currently available such a mission would take about three years. Within that time, crew members would be constantly exposed to large amounts of radiation that we are protected from here by Earth’s magnetic field and atmosphere. Some of this radiation comes in the form of protons from the Sun and can be blocked by adequate spacecraft shielding materials, but a much bigger danger comes from heavy high-energy particles that are constantly whipping across the galaxy, shot out of the hearts of exploding giant stars.

“Because iron particles pack a bigger wallop it is extremely difficult from an engineering perspective to effectively shield against them. One would have to essentially wrap a spacecraft in a six-foot block of lead or concrete.” 

– M. Kerry O’Banion, M.D., Ph.D.

S047While health risks from these high-mass, high-charged (HZE) particles have long been known, the exact nature of the damages they can cause to human physiology is still being researched — even more so now that Mars and asteroid exploration is on NASA’s short list.

Now, a team from the University of Rochester Medical Center (URMC) in New York has announced the results of their research linking high-energy radiation — just like what would be encountered during a trip to Mars — to the degeneration of brain function, and possibly even the onset of Alzheimer’s disease.

“Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion, M.D., Ph.D., a professor in the University of Rochester Medical Center (URMC) Department of Neurobiology and Anatomy and the senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

In particular the team focused on iron ions, which are blasted into space by supernovae and are massive enough to punch through a spacecraft’s protective shielding.

“Because iron particles pack a bigger wallop it is extremely difficult from an engineering perspective to effectively shield against them,” O’Banion said. “One would have to essentially wrap a spacecraft in a six-foot block of lead or concrete.”

advances-in-treating-alzheimers-afBy exposing lab mice to increasing levels of radiation and measuring their cognitive ability the researchers were able to determine the neurologically destructive nature of high-energy particles, which caused the animals to more readily fail cognitive tasks. In addition the exposed mice developed accumulations of a protein plaque within their brains, beta amyloid, the spread of which is associated with Alzheimer’s disease in humans.

“These findings clearly suggest that exposure to radiation in space has the potential to accelerate the development of Alzheimer’s disease,” said O’Banion. “This is yet another factor that NASA, which is clearly concerned about the health risks to its astronauts, will need to take into account as it plans future missions.”

Read more: Space Travel is Bad For Your Eyes

While Mars explorers could potentially protect themselves from cosmic radiation by setting up bases in caves, empty lava tubes or beneath rocky ledges, which would offer the sort of physical shielding necessary to stop dangerous HZE particles, that would obviously present a new set of challenges to astronauts working in an already alien environment. And there’s always the trip there (and back again) during which time a crew would be very much exposed.

While this won’t — and shouldn’t — prevent a Mars mission from eventually taking place, it does add yet another element of danger that will need to be factored in and either dealt with from both health and engineering standpoints… or accepted as an unavoidable risk by all involved, including the public.

S044

How much risk will be considered acceptable for the human exploration of Mars — and beyond? (NASA/Pat Rawlings)

Read more on the URMC news page here, and see the full experiment report here.

Illustrations for NASA by Pat Rawlings. See more of Rawling’s artwork here. Inset image: comparison of human brains without and with Alzheimer’s. Source: WHYY.

 

“Overview:” The Perspective-Altering Effect of Seeing Earth from Space

For over 40 years, the ‘Blue Marble’ images of Earth taken from space have provided a new perspective of our planet, and the sometimes life-altering experience of such views was described in Frank White’s book “The Overview Effect,” published in 1987. When it came out, I gobbled it up, and have since read it several times.

Today, on the 40th anniversary of the final launch of the Apollo missions to the Moon, a new short film “Overview” has been released, which explores this phenomenon through interviews with five astronauts who have experienced first-hand seeing Earth from space.

“This view of the Earth from space – the whole Earth perspective – is, I think, the true symbol of this age,” says White in the film. “I believe … there’s going to be a greater and greater interest in communicating this idea because, after all, it’s key to our survival. We have to start acting as one species with one destiny. We are not going to survive if we don’t do that.”

The film is an inspiring look at how exploring space has given us look back at our own world and changed our perceptions. While some may say the Overview Effect is only a concept, an ideal outcome of space exploration that has yet to become a global phenomenon, I believe it is certainly something we should strive for.

The Blue Marble image from Apollo 17. Credit: Image courtesy NASA Johnson Space Center. See more info about it here.

The film includes:
Edgar Mitchell – Apollo 14 astronaut and founder of the Institute of Noetic Sciences
Ron Garan – ISS astronaut and founder of humanitarian organization Fragile Oasis
Nicole Stott – Shuttle and ISS astronaut and member of Fragile Oasis
Jeff Hoffman – Shuttle astronaut and senior lecturer at MIT
Shane Kimbrough – Shuttle/ISS astronaut and Lieutenant Colonel in the US Army
Frank White – space theorist and author of the book ‘The Overview Effect’
David Loy- philosopher and author
David Beaver – philosopher and co-founder of The Overview Institute

It was produced by a group called Planetary Collective, specifically Guy Reid, Steve Kennedy and Christopher Ferstad.

OVERVIEW from Planetary Collective on Vimeo.

Reminder: Help Uwingu Begin a New Way to Fund Space Exploration

A couple of weeks ago we wrote about Uwingu, a creative, out-of-the-box concept to help solve what appears to be a growing problem for researchers, scientists, educators and students: how to get funding for research and other ground-breaking space exploration and astronomy projects. Why are a group of individuals from the space and astronomy community taking matters into their own hands to do this?

Alan Stern one of the founders of Uwingu, and the Principal Investigator for the New Horizons mission to Pluto, explained it quite well in today’s episode of the 365 Days of Astronomy.

“Well, it seems almost every year we have budget problems,” he said. “This year the planetary budget got cut 20%. Just last week a report came out cutting the National Science Foundation astronomy facilities, recommending those cuts. And every year it’s the economy or it’s an overrun with NASA, or it’s the President’s budget, or it’s something that happens in Congress. And in space research, in space education, unlike, for example, medical research or if you’re a weather researcher or many other fields, there really aren’t very many places to turn when NASA’s budget is cut or the NSF budget’s cut. That’s about it in terms of the funding portfolio. We like to say, you know, if you only own one stock, you probably deserve what you get when it goes down. We’re out to try and diversify that portfolio a little bit.”

UPDATE: Uwingu now has their own website!

The Uwingu team — and by the way, Uwingu means ‘sky’ in Swahili — has put out a new video about their project, and in doing so, reveal a little more about how they plan to create a new funding method. For two years, they’ve been designing and building software products that will be sold, and the proceeds will create the Uwingu Fund for space research, exploration and education.

Pamela Gay described their ideas as “so elegant that I can’t believe they haven’t already been done.”

Uwingu needs to raise about $75,000 to get their concept off the ground, and after that should be self-supporting, as well as supporting an impressive amount of other researchers every year.

So if you haven’t yet checked out Uwingu, here’s a little reminder to do so. Just head to their Indiegogo page and see what you think.

Desert RATS Begin Simulated Asteroid Mission Today

Caption: Artist’s Concept, Space Exploration Vehicle Use Comparison. Credit: NASA

Conspiracy theories abound that the Apollo landings all took place on a film set in California, but today NASA’s Desert RATS team begins a mission to asteroid Itokawa. They will land, rove and even undertake spacewalks, without ever stepping foot out of their home base at Johnson Space Center in Texas. This is no hoax however, but a simulated mission to test out NASA’s audacious plan to send astronauts to an asteroid by 2025.

The Desert RATS have been testing robots and other tools that could be used on future exploration missions since 1997, (this is their 15th mission) usually doing analog missions out in the field. “Desert” refers to the Arizona desert, where a lot of the team’s activities take place and “RATS” stands for “Research and Technology Studies.”

However, since they are now testing out a zero-G visit to an asteroid, the team will use mockups inside JSC’s Space Vehicle Mockup Facility, which offers a medley of tools and simulators that would be difficult to transport to a field test location.

For example, the Multi-Mission Space Exploration Vehicle (MMSEV) is designed to both rove across a planetary surface on a wheeled chassis or fly in space using advanced propulsion systems. Four crew members will take it in turns to live in and operate the simulator to explore the asteroid.

The MMSEV can be put on a sled on an air-bearing floor to simulate the moves that the crew might feel during a real mission. There will also be a 50-second delay in voice transmission, going each way to simulate the light-speed travel time between Earth and the asteroid.

The crew can also undertake spacewalks using ARGOS (Active Response Gravity Offload System) an overhead gantry crane system that simulates the reduced gravity environment. In reality nothing would stop astronauts from just floating off the surface but NASA is thinking about using jetpacks, tethers, bungees, nets or spiderwebs to allow them to float just above the surface attached to a smaller mini-spaceship.

A team of scientists from the Astromaterials Research and Exploration Science Directorate will ensure proper scientific methods are applied to asteroid sample collection techniques throughout the 10 day mission.

The mission is slated to run until August 30th or 31st. Find out more here or follow the NASA Desert RATS team on Twitter

Second image caption: ARGOS can be used to make spacewalkers feel as though they weigh 1/6 of their weight, as they would on the moon, or 1/3, as on Mars. Photo credit: NASA

A Creative New Concept for Funding Space Exploration and Astronomy

An impressive group of individuals from the space and astronomy community have teamed up to create an innovative, out-of-the-box concept to help solve what appears to be a growing problem for researchers, scientists, educators and students: how to get funding for research and other ground-breaking projects. With NASA and National Science Foundation budgets shrinking, a new start-up called Uwingu (which means “sky” in Swahili) will be working to provide ways to keep space science thriving.

Founders of the project include notable names like Alan Stern, Andrew Chaikin, Pamela Gay, Geoff Marcy, Mark Sykes, David Grinspoon, and Emily CoBabe-Amman.

Stern told Universe Today that the group’s initiative is not so much in response to the current government funding troubles, but a way to expand resources for the space and astronomy community, which is “just smart business,” he said.

However, it is an indication of changing times. “We couldn’t do this without the internet, frankly, which provides a new avenue for reaching people,” Stern said.

Additionally, Stern contrasted space and astronomy research, which mainly relies on NASA and NSF grants, to medical research, which has multiple lines of funding venues such as pharmaceutical companies, hospitals, and the hundreds of medical foundations such as the American Cancer Society, in addition to government grants.

While Stern explained that he couldn’t yet reveal all the details of Uwingu, he did provide a few hints.

“The idea is to provide outstanding, innovative and cutting edge products,” he said. “We won’t just be accessing space and astronomy people who want to give to a cause, but will be accessing the general public, which is a much bigger marketplace.”

Dr. Pamela Gay wrote about Uwingu on her Starstryder website, saying “Their ideas are so elegant that I can’t believe they haven’t already been done.”

While the team is still finalizing some of their concepts, part of their reticence is building suspense. “Just like any new product line, it’s part of building suspense, just like Apple does when they release a new product. But we have a whole series of projects in work, and we want to do it right, too.”

Stern said part of what they are doing is to be a safety net for the space and astronomy community and part of it is to do new things. But, he added, when people have the greatest need is probably a good time to launch a project like this.

Uwingu is looking to raise an initial $75,000 through their Indiegogo site (similar to Kickstarter) to get the company going. After that, they hope to be self-sufficient and build enough resources to be a source of grants and funding for space and astronomy research.

“We are asking people to go the Indiegogo page, take a look and consider participating, and then to please pass it on to others you know.” Stern said. “For everyone 10 people you send it to, maybe one will contribute. This needs to grow organically by people passing it on through the internet. We’re hoping the space and astronomy people will help give us a start, but when it launches with the real first products out into the broader public, we think it will be a real breakout.”

“If we can get that message across, I think it will fly. I have faith in this,” Stern added.

To contribute to the project, or to learn more about Uwingu, visit the company’s Indiegogo page: http://www.indiegogo.com/projects/180221

Inspiring Video: The Biological Advantage of Being Awestruck

How many times a week do we use the word “awesome” here on Universe Today? While we haven’t kept track, we admit it’s quite often. We feel privileged to be able to share with you the incredible — yes, awesome — images, videos and stories of our exploration of space. And it turns out, being awestruck could actually be good for us.

“Our ability to awe was biologically selected for us by evolution because it imbues our lives with a sense of cosmic significance that has resulted in a species that works harder not just to survive but to flourish and thrive,” writes filmmaker Jason Silva, who has produced this awesome new video about being awestruck.

Based on three different researcher’s work, Silva’s film highlights how having regular experiences of awe makes us feel good, provides a reason to live and love, spurs us to keep exploring and pushing onward, and provides an “unprecedented expansion of human vision.” The video shows many images from space, especially pictures produced by the Hubble Space Telescope, and Silva told Universe Today that this video is actually dedicated to the HST.

Sit back and enjoy the wonder of being awestruck!

Caption: A firestorm of star birth in the active galaxy Centaurus A. Credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration

The Biological Advantage of Being Awestruck – by @Jason_Silva from Jason Silva on Vimeo.